» Articles » PMID: 15138843

Heterologous Gene Expression in Thermus Thermophilus: Beta-galactosidase, Dibenzothiophene Monooxygenase, PNB Carboxy Esterase, 2-aminobiphenyl-2,3-diol Dioxygenase, and Chloramphenicol Acetyl Transferase

Overview
Specialty Biotechnology
Date 2004 May 13
PMID 15138843
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Enzymes from thermophiles are preferred for industrial applications because they generally show improved tolerance to temperature, pressure, solvents, and pH as compared with enzymes from mesophiles. However, nearly all thermostable enzymes used in industrial applications or available commercially are produced as recombinant enzymes in mesophiles, typically Escherichia coli. The development of high-temperature bioprocesses, particularly those involving cofactor-requiring enzymes and/or multi-step enzymatic pathways, requires a thermophilic host. The extreme thermophile most amenable to genetic manipulation is Thermus thermophilus, but the study of expression of heterologous genes in T. thermophilus is in its infancy. While several heterologous genes have previously been expressed in T. thermophilus, the data reported here include the first examples of the functional expression of a gene from an archaeal hyperthermophile ( bglA from Pyrococcus woesei), a cofactor-requiring enzyme ( dszC from Rhodococcus erythropolis IGTS8), and a two-component enzyme ( carBa and carBb from Sphingomonas sp. GTIN11). A thermostable derivative of pnbA from Bacillus subtilis was also expressed, further expanding the list of genes from heterologous hosts that have been expressed in T. thermophilus.

Citing Articles

Development of a new gene expression vector for Thermus thermophilus using a silica-inducible promoter.

Fujino Y, Goda S, Suematsu Y, Doi K Microb Cell Fact. 2020; 19(1):126.

PMID: 32513169 PMC: 7282064. DOI: 10.1186/s12934-020-01385-2.


Polysaccharide-degrading thermophiles generated by heterologous gene expression in Geobacillus kaustophilus HTA426.

Suzuki H, Yoshida K, Ohshima T Appl Environ Microbiol. 2013; 79(17):5151-8.

PMID: 23793634 PMC: 3753961. DOI: 10.1128/AEM.01506-13.


Genetic tool development underpins recent advances in thermophilic whole-cell biocatalysts.

Taylor M, Van Zyl L, Tuffin I, Leak D, Cowan D Microb Biotechnol. 2011; 4(4):438-48.

PMID: 21310009 PMC: 3815256. DOI: 10.1111/j.1751-7915.2010.00246.x.


Influence of induction conditions on the expression of carbazole dioxygenase components (CarAa, CarAc, and CarAd) from Pseudomonas stutzeri in recombinant Escherichia coli using experimental design.

Larentis A, Sampaio H, Martins O, Rodrigues M, Alves T J Ind Microbiol Biotechnol. 2010; 38(8):1045-54.

PMID: 20953895 DOI: 10.1007/s10295-010-0879-2.


Thermus thermophilus as biological model.

Cava F, Hidalgo A, Berenguer J Extremophiles. 2009; 13(2):213-31.

PMID: 19156357 DOI: 10.1007/s00792-009-0226-6.


References
1.
Fridjonsson O, Mattes R . Production of recombinant alpha-galactosidases in Thermus thermophilus. Appl Environ Microbiol. 2001; 67(9):4192-8. PMC: 93147. DOI: 10.1128/AEM.67.9.4192-4198.2001. View

2.
Pantazaki A, Pritsa A, Kyriakidis D . Biotechnologically relevant enzymes from Thermus thermophilus. Appl Microbiol Biotechnol. 2002; 58(1):1-12. DOI: 10.1007/s00253-001-0843-1. View

3.
Furukawa K, Miyazaki T . Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J Bacteriol. 1986; 166(2):392-8. PMC: 214617. DOI: 10.1128/jb.166.2.392-398.1986. View

4.
Iwata K, Nojiri H, Shimizu K, Yoshida T, Habe H, Omori T . Expression, purification, and characterization of 2'-aminobiphenyl-2,3-diol 1,2-dioxygenase from carbazole-degrader Pseudomonas resinovorans strain CA10. Biosci Biotechnol Biochem. 2003; 67(2):300-7. DOI: 10.1271/bbb.67.300. View

5.
Brock T . The value of basic research: discovery of Thermus aquaticus and other extreme thermophiles. Genetics. 1997; 146(4):1207-10. PMC: 1208068. DOI: 10.1093/genetics/146.4.1207. View