Quantitative Contribution of CYP2D6 and CYP3A to Oxycodone Metabolism in Human Liver and Intestinal Microsomes
Overview
Affiliations
Oxycodone undergoes N-demethylation to noroxycodone and O-demethylation to oxymorphone. The cytochrome P450 (P450) isoforms capable of mediating the oxidation of oxycodone to oxymorphone and noroxycodone were identified using a panel of recombinant human P450s. CYP3A4 and CYP3A5 displayed the highest activity for oxycodone N-demethylation; intrinsic clearance for CYP3A5 was slightly higher than that for CYP3A4. CYP2D6 had the highest activity for O-demethylation. Multienzyme, Michaelis-Menten kinetics were observed for both oxidative reactions in microsomes prepared from five human livers. Inhibition with ketoconazole showed that CYP3A is the high affinity enzyme for oxycodone N-demethylation; ketoconazole inhibited >90% of noroxycodone formation at low substrate concentrations. CYP3A-mediated noroxycodone formation exhibited a mean K(m) of 600 +/- 119 microM and a V(max) that ranged from 716 to 14523 pmol/mg/min. Contribution from the low affinity enzyme(s) did not exceed 8% of total intrinsic clearance for N-demethylation. Quinidine inhibition showed that CYP2D6 is the high affinity enzyme for O-demethylation with a mean K(m) of 130 +/- 33 microM and a V(max) that ranged from 89 to 356 pmol/mg/min. Activity of the low affinity enzyme(s) accounted for 10 to 26% of total intrinsic clearance for O-demethylation. On average, the total intrinsic clearance for noroxycodone formation was 8 times greater than that for oxymorphone formation across the five liver microsomal preparations (10.5 microl/min/mg versus 1.5 microl/min/mg). Experiments with human intestinal mucosal microsomes indicated lower N-demethylation activity (20-50%) compared with liver microsomes and negligible O-demethylation activity, which predict a minimal contribution of intestinal mucosa in the first-pass oxidative metabolism of oxycodone.
Active CNS delivery of oxycodone in healthy and endotoxemic pigs.
Ballgren F, Bergfast T, Ginosyan A, Mahajan J, Lipcsey M, Hammarlund-Udenaes M Fluids Barriers CNS. 2024; 21(1):86.
PMID: 39443944 PMC: 11515623. DOI: 10.1186/s12987-024-00583-z.
Duffy E, Ward J, Hale L, Brown K, Kwilasz A, Saba L Genes Brain Behav. 2024; 23(2):e12894.
PMID: 38597363 PMC: 11005106. DOI: 10.1111/gbb.12894.
Decaix T, Gautier S, Royer L, Laprevote O, Tritz T, Siguret V Aging Clin Exp Res. 2023; 35(11):2471-2481.
PMID: 37861957 DOI: 10.1007/s40520-023-02569-7.
Hydrocodone, Oxycodone, and Morphine Metabolism and Drug-Drug Interactions.
Coates S, Lazarus P J Pharmacol Exp Ther. 2023; 387(2):150-169.
PMID: 37679047 PMC: 10586512. DOI: 10.1124/jpet.123.001651.
Nguyen J, Tian D, Tanna R, Arian C, Calamia J, Rettie A J Pharmacol Exp Ther. 2023; 387(3):252-264.
PMID: 37541764 PMC: 10658920. DOI: 10.1124/jpet.123.001681.