» Articles » PMID: 14734535

A Divergent Canonical WNT-signaling Pathway Regulates Microtubule Dynamics: Dishevelled Signals Locally to Stabilize Microtubules

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 2004 Jan 22
PMID 14734535
Citations 101
Authors
Affiliations
Soon will be listed here.
Abstract

Dishevelled (DVL) is associated with axonal microtubules and regulates microtubule stability through the inhibition of the serine/threonine kinase, glycogen synthase kinase 3beta (GSK-3beta). In the canonical WNT pathway, the negative regulator Axin forms a complex with beta-catenin and GSK-3beta, resulting in beta-catenin degradation. Inhibition of GSK-3beta by DVL increases beta-catenin stability and TCF transcriptional activation. Here, we show that Axin associates with microtubules and unexpectedly stabilizes microtubules through DVL. In turn, DVL stabilizes microtubules by inhibiting GSK-3beta through a transcription- and beta-catenin-independent pathway. More importantly, axonal microtubules are stabilized after DVL localizes to axons. Increased microtubule stability is correlated with a decrease in GSK-3beta-mediated phosphorylation of MAP-1B. We propose a model in which Axin, through DVL, stabilizes microtubules by inhibiting a pool of GSK-3beta, resulting in local changes in the phosphorylation of cellular targets. Our data indicate a bifurcation in the so-called canonical WNT-signaling pathway to regulate microtubule stability.

Citing Articles

Spatiotemporal changes in Netrin/Dscam1 signaling dictate axonal projection direction in small ventral lateral clock neurons.

Liu J, Wang Y, Liu X, Han J, Tian Y Elife. 2024; 13.

PMID: 39052321 PMC: 11272162. DOI: 10.7554/eLife.96041.


The interplay between Wnt signaling pathways and microtubule dynamics.

Kikuchi K, Arata M In Vitro Cell Dev Biol Anim. 2024; 60(5):502-512.

PMID: 38349554 DOI: 10.1007/s11626-024-00860-z.


Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components.

Guan G, Cannon R, Coates D, Mei L Genes (Basel). 2023; 14(2).

PMID: 36833199 PMC: 9957420. DOI: 10.3390/genes14020272.


Predicting Modifiers of Genotype-Phenotype Correlations in Craniofacial Development.

Kar R, Eberhart J Int J Mol Sci. 2023; 24(2).

PMID: 36674738 PMC: 9864425. DOI: 10.3390/ijms24021222.


Genetic regulation of central synapse formation and organization in Drosophila melanogaster.

Duhart J, Mosca T Genetics. 2022; 221(3).

PMID: 35652253 PMC: 9252286. DOI: 10.1093/genetics/iyac078.


References
1.
Zhurinsky J, Shtutman M, Ben-Zeev A . Differential mechanisms of LEF/TCF family-dependent transcriptional activation by beta-catenin and plakoglobin. Mol Cell Biol. 2000; 20(12):4238-52. PMC: 85792. DOI: 10.1128/MCB.20.12.4238-4252.2000. View

2.
Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A . Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 1998; 17(5):1371-84. PMC: 1170485. DOI: 10.1093/emboj/17.5.1371. View

3.
Salic A, Lee E, Mayer L, Kirschner M . Control of beta-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol Cell. 2000; 5(3):523-32. DOI: 10.1016/s1097-2765(00)80446-3. View

4.
Krylova O, Messenger M, Salinas P . Dishevelled-1 regulates microtubule stability: a new function mediated by glycogen synthase kinase-3beta. J Cell Biol. 2000; 151(1):83-94. PMC: 2189803. DOI: 10.1083/jcb.151.1.83. View

5.
Huelsken J, Birchmeier W . New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev. 2001; 11(5):547-53. DOI: 10.1016/s0959-437x(00)00231-8. View