» Articles » PMID: 14715908

Coregulator-dependent Facilitation of Chromatin Occupancy by GATA-1

Overview
Specialty Science
Date 2004 Jan 13
PMID 14715908
Citations 82
Authors
Affiliations
Soon will be listed here.
Abstract

Coregulator recruitment by DNA-bound factors results in chromatin modification and protein-protein interactions, which regulate transcription. However, the mechanism by which the Friend of GATA (FOG) coregulator mediates GATA factor-dependent transcription is unknown. We showed previously that GATA-1 replaces GATA-2 at an upstream region of the GATA-2 locus, and that this GATA switch represses GATA-2. Genetic complementation analysis in FOG-1-null hematopoietic precursors revealed that FOG-1 is not required for establishment or maintenance of the active GATA-2 domain, but is critical for the GATA switch. Analysis of GATA factor binding to additional loci also revealed FOG-1-dependent GATA switches. Thus, FOG-1 facilitates chromatin occupancy by GATA-1 at sites bound by GATA-2. We propose that FOG-1 is a prototype of a new class of coregulators termed chromatin occupancy facilitators, which confer coregulation in certain contexts via enhancing trans-acting factor binding to chromatin in vivo.

Citing Articles

Fetal hemoglobin induction in azacytidine responders enlightens methylation patterns related to blast clearance in higher-risk MDS and CMML.

Chatzilygeroudi T, Chondrou V, Boers R, Siamoglou S, Athanasopoulou K, Verigou E Clin Epigenetics. 2024; 16(1):79.

PMID: 38879530 PMC: 11180405. DOI: 10.1186/s13148-024-01687-x.


Endogenous small molecule effectors in GATA transcription factor mechanisms governing biological and pathological processes.

Liao R, Bresnick E Exp Hematol. 2024; 137:104252.

PMID: 38876253 PMC: 11381147. DOI: 10.1016/j.exphem.2024.104252.


Gene silencing dynamics are modulated by transiently active regulatory elements.

Vermunt M, Luan J, Zhang Z, Thrasher A, Huang A, Saari M Mol Cell. 2023; 83(5):715-730.e6.

PMID: 36868189 PMC: 10719944. DOI: 10.1016/j.molcel.2023.02.006.


Molecular and cellular mechanisms that regulate human erythropoiesis.

Caulier A, Sankaran V Blood. 2021; 139(16):2450-2459.

PMID: 34936695 PMC: 9029096. DOI: 10.1182/blood.2021011044.


Inactivation of the GATA Cofactor ZFPM1 Results in Abnormal Development of Dorsal Raphe Serotonergic Neuron Subtypes and Increased Anxiety-Like Behavior.

Tikker L, Casarotto P, Singh P, Biojone C, Piepponen T, Estartus N J Neurosci. 2020; 40(45):8669-8682.

PMID: 33046550 PMC: 7643297. DOI: 10.1523/JNEUROSCI.2252-19.2020.


References
1.
Vignali M, Steger D, Neely K, Workman J . Distribution of acetylated histones resulting from Gal4-VP16 recruitment of SAGA and NuA4 complexes. EMBO J. 2000; 19(11):2629-40. PMC: 212761. DOI: 10.1093/emboj/19.11.2629. View

2.
Crispino J, Lodish M, Mackay J, Orkin S . Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol Cell. 1999; 3(2):219-28. DOI: 10.1016/s1097-2765(00)80312-3. View

3.
Shimojo M, Lee J, Hersh L . Role of zinc finger domains of the transcription factor neuron-restrictive silencer factor/repressor element-1 silencing transcription factor in DNA binding and nuclear localization. J Biol Chem. 2001; 276(16):13121-6. DOI: 10.1074/jbc.M011193200. View

4.
Cirillo L, Lin F, Cuesta I, Friedman D, Jarnik M, Zaret K . Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell. 2002; 9(2):279-89. DOI: 10.1016/s1097-2765(02)00459-8. View

5.
Katz S, Cantor A, Orkin S . Interaction between FOG-1 and the corepressor C-terminal binding protein is dispensable for normal erythropoiesis in vivo. Mol Cell Biol. 2002; 22(9):3121-8. PMC: 133767. DOI: 10.1128/MCB.22.9.3121-3128.2002. View