» Articles » PMID: 14681454

The Database of Interacting Proteins: 2004 Update

Overview
Specialty Biochemistry
Date 2003 Dec 19
PMID 14681454
Citations 891
Authors
Affiliations
Soon will be listed here.
Abstract

The Database of Interacting Proteins (http://dip.doe-mbi.ucla.edu) aims to integrate the diverse body of experimental evidence on protein-protein interactions into a single, easily accessible online database. Because the reliability of experimental evidence varies widely, methods of quality assessment have been developed and utilized to identify the most reliable subset of the interactions. This CORE set can be used as a reference when evaluating the reliability of high-throughput protein-protein interaction data sets, for development of prediction methods, as well as in the studies of the properties of protein interaction networks.

Citing Articles

Structure-Based Deep Learning Framework for Modeling Human-Gut Bacterial Protein Interactions.

Kiouri D, Batsis G, Chasapis C Proteomes. 2025; 13(1).

PMID: 39982320 PMC: 11843979. DOI: 10.3390/proteomes13010010.


Structure-Based Approaches for Protein-Protein Interaction Prediction Using Machine Learning and Deep Learning.

Kiouri D, Batsis G, Chasapis C Biomolecules. 2025; 15(1).

PMID: 39858535 PMC: 11763140. DOI: 10.3390/biom15010141.


State of the interactomes: an evaluation of molecular networks for generating biological insights.

Wright S, Colton S, Schaffer L, Pillich R, Churas C, Pratt D Mol Syst Biol. 2024; 21(1):1-29.

PMID: 39653848 PMC: 11697402. DOI: 10.1038/s44320-024-00077-y.


TPepPro: a deep learning model for predicting peptide-protein interactions.

Jin X, Chen Z, Yu D, Jiang Q, Chen Z, Yan B Bioinformatics. 2024; 41(1).

PMID: 39585721 PMC: 11681936. DOI: 10.1093/bioinformatics/btae708.


An Effective Computational Method for Predicting Self-Interacting Proteins Based on VGGNet Convolutional Neural Network and Gray-Level Co-occurrence Matrix.

Chu D, An J, Nie X Evol Bioinform Online. 2024; 20:11769343241292224.

PMID: 39464790 PMC: 11503870. DOI: 10.1177/11769343241292224.


References
1.
Xenarios I, Rice D, Salwinski L, Baron M, Marcotte E, Eisenberg D . DIP: the database of interacting proteins. Nucleic Acids Res. 1999; 28(1):289-91. PMC: 102387. DOI: 10.1093/nar/28.1.289. View

2.
Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y . A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A. 2001; 98(8):4569-74. PMC: 31875. DOI: 10.1073/pnas.061034498. View

3.
Mrowka R, Patzak A, Herzel H . Is there a bias in proteome research?. Genome Res. 2001; 11(12):1971-3. DOI: 10.1101/gr.206701. View

4.
Uetz P, Giot L, Cagney G, Mansfield T, Judson R, Knight J . A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000; 403(6770):623-7. DOI: 10.1038/35001009. View

5.
Westbrook J, Feng Z, Jain S, Bhat T, Thanki N, Ravichandran V . The Protein Data Bank: unifying the archive. Nucleic Acids Res. 2001; 30(1):245-8. PMC: 99110. DOI: 10.1093/nar/30.1.245. View