Katz D, Sussman M
Plant Physiol. 1987; 83(4):977-81.
PMID: 16665375
PMC: 1056486.
DOI: 10.1104/pp.83.4.977.
Kruse S, Pommerencke J, Kleineidam R, Roggentin P, Schauer R
Glycoconj J. 1998; 15(8):769-75.
PMID: 9870352
DOI: 10.1023/a:1006907931365.
Martin J, Mancheno J, Arche R
Biochem J. 1993; 291 ( Pt 3):907-14.
PMID: 8489517
PMC: 1132455.
DOI: 10.1042/bj2910907.
Huynh Q
Biochem J. 1993; 290 ( Pt 2):525-30.
PMID: 8452542
PMC: 1132305.
DOI: 10.1042/bj2900525.
Page M
Biochem J. 1993; 295 ( Pt 1):295-304.
PMID: 8216231
PMC: 1134852.
DOI: 10.1042/bj2950295.
Studies on the structural and functional aspects of Rhodotorula gracilis D-amino acid oxidase by limited trypsinolysis.
Pollegioni L, Ceciliani F, Curti B, Ronchi S, Pilone M
Biochem J. 1995; 310 ( Pt 2):577-83.
PMID: 7654197
PMC: 1135934.
DOI: 10.1042/bj3100577.
Chemical modification of enzymes: critical evaluation of the graphical correlation between residual enzyme activity and number of groups modified.
Stevens E, Colman R
Bull Math Biol. 1980; 42(2):239-55.
PMID: 7370445
DOI: 10.1007/BF02464640.
Isolation and photo-oxidation of lysozyme fragments.
Ferrer I, Silva E
Radiat Environ Biophys. 1981; 20(1):67-77.
PMID: 7323269
DOI: 10.1007/BF01323927.
Pigeon liver malic enzyme.
Hsu R
Mol Cell Biochem. 1982; 43(1):3-26.
PMID: 7078548
DOI: 10.1007/BF00229535.
Kinetic analysis of biphasic protein modification reactions.
Rakitzis E
J Math Biol. 1980; 10(1):79-87.
PMID: 6782185
DOI: 10.1007/BF00276397.
Kinetic analysis of the role of lipoic acid residues in the pyruvate dehydrogenase multienzyme complex of Escherichia coli.
Danson M, Griffin W, Hale G, Perham R
Biochem J. 1980; 187(2):393-401.
PMID: 6772160
PMC: 1161805.
DOI: 10.1042/bj1870393.
Kinetics of protein modification reactions.
Rakitzis E
Biochem J. 1984; 217(2):341-51.
PMID: 6365085
PMC: 1153224.
DOI: 10.1042/bj2170341.
The active centre of triose phosphate isomerase.
Burton P, WALEY S
Biochem J. 1966; 100(3):702-10.
PMID: 5969283
PMC: 1265204.
DOI: 10.1042/bj1000702.
Evidence for histidine in the triethyltin-binding site of rat haemoglobin.
Rose M
Biochem J. 1969; 111(2):129-37.
PMID: 5763785
PMC: 1187799.
DOI: 10.1042/bj1110129.
The reaction of 2,4,6-trinitrobenzenesulphonic acid with amino acids, Peptides and proteins.
Freedman R, Radda G
Biochem J. 1968; 108(3):383-91.
PMID: 5667253
PMC: 1198823.
DOI: 10.1042/bj1080383.
The interaction of triethyltin with a component of guinea-pig liver supernatant. Evidence for histidine in the binding sites.
Rose M, Lock E
Biochem J. 1970; 120(1):151-7.
PMID: 5494221
PMC: 1179579.
DOI: 10.1042/bj1200151.
[Photooxidation of lysozyme at different wavelengths (author's transl)].
Silva E, Risi S, Dose K
Radiat Environ Biophys. 1974; 11(2):111-24.
PMID: 4849394
DOI: 10.1007/BF01559762.
Chemical modification of glutamate dehydrogenase by 2,4,6-trinitrobenzenesulphonic acid.
Freedman R, Radda G
Biochem J. 1969; 114(3):611-9.
PMID: 4309531
PMC: 1184934.
DOI: 10.1042/bj1140611.
Kinetics of protein-modification reactions. Stoichiometry of modification-produced enzyme inactivation: modification of rhodanese by 2,4,6-trinitrobenzenesulphonic acid.
Rakitzis E, Malliopoulou T
Biochem J. 1985; 230(1):89-93.
PMID: 4052047
PMC: 1152590.
DOI: 10.1042/bj2300089.
Photochemical reactivity of the homologous proteins alpha-lactalbumin and lysozyme.
Edwards A, Silva E
Radiat Environ Biophys. 1985; 24(2):141-8.
PMID: 4011849
DOI: 10.1007/BF01229820.