Douglas C, Bird J, Kopinke D, Esser K
PLoS One. 2024; 19(4):e0300348.
PMID: 38687705
PMC: 11060602.
DOI: 10.1371/journal.pone.0300348.
Burnham H, Cizauskas H, Barefield D
Am J Physiol Heart Circ Physiol. 2023; 326(3):H568-H583.
PMID: 38156887
PMC: 11221815.
DOI: 10.1152/ajpheart.00252.2023.
Barefield D, Tonino P, Woulfe K, Rahmanseresht S, OLeary T, Burnham H
Proc Natl Acad Sci U S A. 2023; 120(51):e2314920120.
PMID: 38091294
PMC: 10741380.
DOI: 10.1073/pnas.2314920120.
Halas M, Langa P, Warren C, Goldspink P, Wolska B, Solaro R
Mol Pharmacol. 2022; 101(5):286-299.
PMID: 35236770
PMC: 9092471.
DOI: 10.1124/molpharm.121.000420.
Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X
Nat Rev Cardiol. 2020; 17(6):341-359.
PMID: 32015528
PMC: 7239749.
DOI: 10.1038/s41569-019-0331-x.
Skeletal myosin binding protein-C isoforms regulate thin filament activity in a Ca-dependent manner.
Lin B, Li A, Mun J, Previs M, Previs S, Campbell S
Sci Rep. 2018; 8(1):2604.
PMID: 29422607
PMC: 5805719.
DOI: 10.1038/s41598-018-21053-1.
Differences in Contractile Function of Myofibrils within Human Embryonic Stem Cell-Derived Cardiomyocytes vs. Adult Ventricular Myofibrils Are Related to Distinct Sarcomeric Protein Isoforms.
Iorga B, Schwanke K, Weber N, Wendland M, Greten S, Piep B
Front Physiol. 2018; 8:1111.
PMID: 29403388
PMC: 5780405.
DOI: 10.3389/fphys.2017.01111.
Engineered Microenvironments for Maturation of Stem Cell Derived Cardiac Myocytes.
Besser R, Ishahak M, Mayo V, Carbonero D, Claure I, Agarwal A
Theranostics. 2018; 8(1):124-140.
PMID: 29290797
PMC: 5743464.
DOI: 10.7150/thno.19441.
Postnatal Development of Right Ventricular Myofibrillar Biomechanics in Relation to the Sarcomeric Protein Phenotype in Pediatric Patients with Conotruncal Heart Defects.
Elhamine F, Iorga B, Kruger M, Hunger M, Eckhardt J, Sreeram N
J Am Heart Assoc. 2016; 5(6).
PMID: 27353610
PMC: 4937289.
DOI: 10.1161/JAHA.116.003699.
Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes.
Yang X, Pabon L, Murry C
Circ Res. 2014; 114(3):511-23.
PMID: 24481842
PMC: 3955370.
DOI: 10.1161/CIRCRESAHA.114.300558.
Uncoupling of increased cellular oxidative stress and myocardial ischemia reperfusion injury by directed sarcolemma stabilization.
Martindale J, Metzger J
J Mol Cell Cardiol. 2013; 67:26-37.
PMID: 24362314
PMC: 3920738.
DOI: 10.1016/j.yjmcc.2013.12.008.
The effects of slow skeletal troponin I expression in the murine myocardium are influenced by development-related shifts in myosin heavy chain isoform.
Ford S, Chandra M
J Physiol. 2012; 590(23):6047-63.
PMID: 22966157
PMC: 3530116.
DOI: 10.1113/jphysiol.2012.240085.
Diastolic dysfunction and thin filament dysregulation resulting from excitation-contraction uncoupling in a mouse model of restrictive cardiomyopathy.
Davis J, Yasuda S, Palpant N, Martindale J, Stevenson T, Converso K
J Mol Cell Cardiol. 2012; 53(3):446-57.
PMID: 22683325
PMC: 3443869.
DOI: 10.1016/j.yjmcc.2012.05.018.
Functional characterization of the human α-cardiac actin mutations Y166C and M305L involved in hypertrophic cardiomyopathy.
Muller M, Mazur A, Behrmann E, Diensthuber R, Radke M, Qu Z
Cell Mol Life Sci. 2012; 69(20):3457-79.
PMID: 22643837
PMC: 11115188.
DOI: 10.1007/s00018-012-1030-5.
Titin visualization in real time reveals an unexpected level of mobility within and between sarcomeres.
Lopes K, Pietas A, Radke M, Gotthardt M
J Cell Biol. 2011; 193(4):785-98.
PMID: 21555460
PMC: 3166869.
DOI: 10.1083/jcb.201010099.
Fetal cardiac troponin isoforms rescue the increased Ca2+ sensitivity produced by a novel double deletion in cardiac troponin T linked to restrictive cardiomyopathy: a clinical, genetic, and functional approach.
Pinto J, Yang S, Hitz M, Parvatiyar M, Jones M, Liang J
J Biol Chem. 2011; 286(23):20901-12.
PMID: 21502316
PMC: 3121488.
DOI: 10.1074/jbc.M111.234336.
Cardiac troponin mutations and restrictive cardiomyopathy.
Parvatiyar M, Pinto J, Dweck D, Potter J
J Biomed Biotechnol. 2010; 2010:350706.
PMID: 20617149
PMC: 2896668.
DOI: 10.1155/2010/350706.
Pathogenic peptide deviations support a model of adaptive evolution of chordate cardiac performance by troponin mutations.
Palpant N, Houang E, Delport W, Hastings K, Onufriev A, Sham Y
Physiol Genomics. 2010; 42(2):287-99.
PMID: 20423961
PMC: 3032286.
DOI: 10.1152/physiolgenomics.00033.2010.
Combinatorial effects of double cardiomyopathy mutant alleles in rodent myocytes: a predictive cellular model of myofilament dysregulation in disease.
Davis J, Metzger J
PLoS One. 2010; 5(2):e9140.
PMID: 20161772
PMC: 2818843.
DOI: 10.1371/journal.pone.0009140.
Molecular cardiology in translation: gene, cell and chemical-based experimental therapeutics for the failing heart.
Turner I, Belema-Bedada F, Martindale J, Townsend D, Wang W, Palpant N
J Cardiovasc Transl Res. 2009; 1(4):317-27.
PMID: 19956787
PMC: 2759715.
DOI: 10.1007/s12265-008-9065-6.