» Articles » PMID: 12519984

PlasmoDB: the Plasmodium Genome Resource. A Database Integrating Experimental and Computational Data

Abstract

PlasmoDB (http://PlasmoDB.org) is the official database of the Plasmodium falciparum genome sequencing consortium. This resource incorporates the recently completed P. falciparum genome sequence and annotation, as well as draft sequence and annotation emerging from other Plasmodium sequencing projects. PlasmoDB currently houses information from five parasite species and provides tools for intra- and inter-species comparisons. Sequence information is integrated with other genomic-scale data emerging from the Plasmodium research community, including gene expression analysis from EST, SAGE and microarray projects and proteomics studies. The relational schema used to build PlasmoDB, GUS (Genomics Unified Schema) employs a highly structured format to accommodate the diverse data types generated by sequence and expression projects. A variety of tools allow researchers to formulate complex, biologically-based, queries of the database. A stand-alone version of the database is also available on CD-ROM (P. falciparum GenePlot), facilitating access to the data in situations where internet access is difficult (e.g. by malaria researchers working in the field). The goal of PlasmoDB is to facilitate utilization of the vast quantities of genomic-scale data produced by the global malaria research community. The software used to develop PlasmoDB has been used to create a second Apicomplexan parasite genome database, ToxoDB (http://ToxoDB.org).

Citing Articles

Profiling antimalarial drug-resistant haplotypes in , 1, and genes in causing malaria in the Central Region of Ghana: a multicentre cross-sectional study.

Dakorah M, Aninagyei E, Attoh J, Adzakpah G, Tukwarlba I, Acheampong D Ther Adv Infect Dis. 2025; 12:20499361251319665.

PMID: 39968164 PMC: 11833835. DOI: 10.1177/20499361251319665.


The spatiotemporal transcriptional profiling of murine brain during cerebral malaria progression and after artemisinin treatment.

Chen J, Bai Y, He X, Xiao W, Chen L, Wong Y Nat Commun. 2025; 16(1):1540.

PMID: 39934099 PMC: 11814382. DOI: 10.1038/s41467-024-52223-7.


Proteomes of plasmodium knowlesi early and late ring-stage parasites and infected host erythrocytes.

Anderson D, Peterson M, Lapp S, Galinski M J Proteomics. 2024; 302:105197.

PMID: 38759952 PMC: 11357705. DOI: 10.1016/j.jprot.2024.105197.


Long-Read Sequencing and Genome Assembly Pipeline of Two Clones (3D7, W2) Using Only the PromethION Sequencer from Oxford Nanopore Technologies without Whole-Genome Amplification.

Delandre O, Lamer O, Loreau J, Papa Mze N, Fonta I, Mosnier J Biology (Basel). 2024; 13(2).

PMID: 38392307 PMC: 10886359. DOI: 10.3390/biology13020089.


Infected erythrocytes and plasma proteomics reveal a specific protein signature of severe malaria.

Fraering J, Salnot V, Gautier E, Ezinmegnon S, Argy N, Peoch K EMBO Mol Med. 2024; 16(2):319-333.

PMID: 38297098 PMC: 10897182. DOI: 10.1038/s44321-023-00010-0.


References
1.
Florens L, Washburn M, Raine J, Anthony R, Grainger M, Haynes J . A proteomic view of the Plasmodium falciparum life cycle. Nature. 2002; 419(6906):520-6. DOI: 10.1038/nature01107. View

2.
Manduchi E, Grant G, McKenzie S, Overton G, Surrey S, Stoeckert Jr C . Generation of patterns from gene expression data by assigning confidence to differentially expressed genes. Bioinformatics. 2000; 16(8):685-98. DOI: 10.1093/bioinformatics/16.8.685. View

3.
Donnes P, Elofsson A . Prediction of MHC class I binding peptides, using SVMHC. BMC Bioinformatics. 2002; 3:25. PMC: 129981. DOI: 10.1186/1471-2105-3-25. View

4.
Mu J, Duan J, Makova K, Joy D, Huynh C, Branch O . Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparum. Nature. 2002; 418(6895):323-6. DOI: 10.1038/nature00836. View

5.
Gardner M, Hall N, Fung E, White O, Berriman M, Hyman R . Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002; 419(6906):498-511. PMC: 3836256. DOI: 10.1038/nature01097. View