» Articles » PMID: 12130541

C. Elegans EOR-1/PLZF and EOR-2 Positively Regulate Ras and Wnt Signaling and Function Redundantly with LIN-25 and the SUR-2 Mediator Component

Overview
Journal Genes Dev
Specialty Molecular Biology
Date 2002 Jul 20
PMID 12130541
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

In Caenorhabditis elegans, Ras/ERK and Wnt/beta-catenin signaling pathways cooperate to induce P12 and vulval cell fates in a Hox-dependent manner. Here we describe eor-1 and eor-2, two new positively acting nuclear components of the Ras and Wnt pathways. eor-1 and eor-2 act downstream or in parallel to ERK and function redundantly with the Mediator complex gene sur-2 and the functionally related gene lin-25, such that removal of both eor-1/eor-2 and sur-2/lin-25 mimics the removal of a main Ras pathway component. Furthermore, the eor-1 and eor-2 mutant backgrounds reveal an essential role for the Elk1-related gene lin-1. eor-1 and eor-2 also act downstream or in parallel to pry-1 Axin and therefore act at the convergence of the Ras and Wnt pathways. eor-1 encodes the ortholog of human PLZF, a BTB/zinc-finger transcription factor that is fused to RARalpha in acute promyelocytic leukemia. eor-2 encodes a novel protein. EOR-1/PLZF and EOR-2 appear to function closely together and cooperate with Hox genes to promote the expression of Ras- and Wnt-responsive genes. Further studies of eor-1 and eor-2 may provide insight into the roles of PLZF in normal development and leukemogenesis.

Citing Articles

The Pax transcription factor EGL-38 links EGFR signaling to assembly of a cell type-specific apical extracellular matrix in the Caenorhabditis elegans vulva.

Schmidt H, Darwin C, Sundaram M Dev Biol. 2024; 517:265-277.

PMID: 39489317 PMC: 11631643. DOI: 10.1016/j.ydbio.2024.10.008.


The Pax transcription factor EGL-38 links EGFR signaling to assembly of a cell-type specific apical extracellular matrix in the vulva.

Schmidt H, Darwin C, Sundaram M bioRxiv. 2024; .

PMID: 39282387 PMC: 11398461. DOI: 10.1101/2024.09.04.611291.


Regulatory mechanism of cold-inducible diapause in Caenorhabditis elegans.

Horikawa M, Fukuyama M, Antebi A, Mizunuma M Nat Commun. 2024; 15(1):5793.

PMID: 38987256 PMC: 11237089. DOI: 10.1038/s41467-024-50111-8.


Mechanisms of lineage specification in Caenorhabditis elegans.

Liu J, Murray J Genetics. 2023; 225(4).

PMID: 37847877 PMC: 11491538. DOI: 10.1093/genetics/iyad174.


Ribosome biogenesis disruption mediated chromatin structure changes revealed by SRAtac, a customizable end to end analysis pipeline for ATAC-seq.

Freeman T, Zhao Q, Surya A, Rothe R, Sarinay Cenik E BMC Genomics. 2023; 24(1):512.

PMID: 37658321 PMC: 10472662. DOI: 10.1186/s12864-023-09576-y.


References
1.
Lackner M, Kim S . Genetic analysis of the Caenorhabditis elegans MAP kinase gene mpk-1. Genetics. 1998; 150(1):103-17. PMC: 1460334. DOI: 10.1093/genetics/150.1.103. View

2.
MOHLER W, Simske J, Hardin J, White J . Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis. Curr Biol. 1998; 8(19):1087-90. DOI: 10.1016/s0960-9822(98)70447-6. View

3.
Campbell S, Khosravi-Far R, Rossman K, Clark G, Der C . Increasing complexity of Ras signaling. Oncogene. 1998; 17(11 Reviews):1395-413. DOI: 10.1038/sj.onc.1202174. View

4.
Sternberg P, Han M . Genetics of RAS signaling in C. elegans. Trends Genet. 1998; 14(11):466-72. DOI: 10.1016/s0168-9525(98)01592-3. View

5.
Maloof J, Whangbo J, Harris J, Jongeward G, Kenyon C . A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development. 1998; 126(1):37-49. DOI: 10.1242/dev.126.1.37. View