» Articles » PMID: 12006566

Transcriptional Regulation in Constraints-based Metabolic Models of Escherichia Coli

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2002 May 15
PMID 12006566
Citations 110
Authors
Affiliations
Soon will be listed here.
Abstract

Full genome sequences enable the construction of genome-scale in silico models of complex cellular functions. Genome-scale constraints-based models of Escherichia coli metabolism have been constructed and used to successfully interpret and predict cellular behavior under a range of conditions. These previous models do not account for regulation of gene transcription and thus cannot accurately predict some organism functions. Here we present an in silico model of the central E. coli metabolism that accounts for regulation of gene expression. This model accounts for 149 genes, the products of which include 16 regulatory proteins and 73 enzymes. These enzymes catalyze 113 reactions, 45 of which are controlled by transcriptional regulation. The combined metabolic/regulatory model can predict the ability of mutant E. coli strains to grow on defined media as well as time courses of cell growth, substrate uptake, metabolic by-product secretion, and qualitative gene expression under various conditions, as indicated by comparison with experimental data under a variety of environmental conditions. The in silico model may also be used to interpret dynamic behaviors observed in cell cultures. This combined metabolic/regulatory model is thus an important step toward the goal of synthesizing genome-scale models that accurately represent E. coli behavior.

Citing Articles

Metabolic reprogramming and signalling cross-talks in tumour-immune interaction: a system-level exploration.

Shukla M, Bhowmick R, Ganguli P, Sarkar R R Soc Open Sci. 2024; 11(3):231574.

PMID: 38481985 PMC: 10933535. DOI: 10.1098/rsos.231574.


Metabolic function-based normalization improves transcriptome data-driven reduction of genome-scale metabolic models.

Jalili M, Scharm M, Wolkenhauer O, Salehzadeh-Yazdi A NPJ Syst Biol Appl. 2023; 9(1):15.

PMID: 37210409 PMC: 10199931. DOI: 10.1038/s41540-023-00281-w.


RNAP Promoter Search and Transcription Kinetics in Live Cells.

Bettridge K, Harris F, Yehya N, Xiao J J Phys Chem B. 2023; 127(17):3816-3828.

PMID: 37098218 PMC: 11212508. DOI: 10.1021/acs.jpcb.2c09142.


Network medicine: an approach to complex kidney disease phenotypes.

Pandey A, Loscalzo J Nat Rev Nephrol. 2023; 19(7):463-475.

PMID: 37041415 DOI: 10.1038/s41581-023-00705-0.


Constraint-Based Reconstruction and Analyses of Metabolic Models: Open-Source Python Tools and Applications to Cancer.

Ng R, Lee J, Baloni P, Diener C, Heath J, Su Y Front Oncol. 2022; 12:914594.

PMID: 35875150 PMC: 9303011. DOI: 10.3389/fonc.2022.914594.