» Articles » PMID: 11698604

Impact of Early Deafness and Early Exposure to Sign Language on the Cerebral Organization for Motion Processing

Overview
Journal J Neurosci
Specialty Neurology
Date 2001 Nov 8
PMID 11698604
Citations 95
Authors
Affiliations
Soon will be listed here.
Abstract

This functional magnetic resonance imaging study investigated the impact of early auditory deprivation and/or use of a visuospatial language [American sign language (ASL)] on the organization of neural systems important in visual motion processing by comparing hearing controls with deaf and hearing native signers. Participants monitored moving flowfields under different conditions of spatial and featural attention. Recruitment of the motion-selective area MT-MST in hearing controls was observed to be greater when attention was directed centrally and when the task was to detect motion features, confirming previous reports that the motion network is selectively modulated by different aspects of attention. More importantly, we observed marked differences in the recruitment of motion-related areas as a function of early experience. First, the lateralization of MT-MST was found to shift toward the left hemisphere in early signers, suggesting that early exposure to ASL leads to a greater reliance on the left MT-MST. Second, whereas the two hearing populations displayed more MT-MST activation under central than peripheral attention, the opposite pattern was observed in deaf signers, indicating enhanced recruitment of MT-MST during peripheral attention after early deafness. Third, deaf signers, but neither of the hearing populations, displayed increased activation of the posterior parietal cortex, supporting the view that parietal functions are modified after early auditory deprivation. Finally, only in deaf signers did attention to motion result in enhanced recruitment of the posterior superior temporal sulcus, establishing for the first time in humans that this polymodal area is modified after early sensory deprivation. Together these results highlight the functional and regional specificity of neuroplasticity in humans.

Citing Articles

Unraveling the impact of congenital deafness on individual brain organization.

Amaral L, Wang X, Bi Y, Striem-Amit E Elife. 2025; 13.

PMID: 40072311 PMC: 11903032. DOI: 10.7554/eLife.96944.


Neural adaptations in short-term learning of sign language revealed by fMRI and DTI.

Alotaibi S, Alamri S, Alsaleh A, Meyer G Sci Rep. 2025; 15(1):5345.

PMID: 39948087 PMC: 11825837. DOI: 10.1038/s41598-024-84468-z.


Investigating the impact of early deafness on learned action-effect contingency for action linked to peripheral sensory effects.

Vercillo T, Scurry A, Jiang F Neuropsychologia. 2024; 202:108964.

PMID: 39084355 PMC: 11407474. DOI: 10.1016/j.neuropsychologia.2024.108964.


Research of visual attention networks in deaf individuals: a systematic review.

Gioiosa Maurno N, Phillips-Silver J, Daza Gonzalez M Front Psychol. 2024; 15:1369941.

PMID: 38800679 PMC: 11120974. DOI: 10.3389/fpsyg.2024.1369941.


Mapping the unique neural engagement in deaf individuals during picture, word, and sign language processing: fMRI study.

Kumar U, Dhanik K, Mishra M, Pandey H, Keshri A Brain Imaging Behav. 2024; 18(4):835-851.

PMID: 38523177 DOI: 10.1007/s11682-024-00878-7.


References
1.
Brefczynski J, Deyoe E . A physiological correlate of the 'spotlight' of visual attention. Nat Neurosci. 1999; 2(4):370-4. DOI: 10.1038/7280. View

2.
Downar J, Crawley A, Mikulis D, Davis K . A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci. 2000; 3(3):277-83. DOI: 10.1038/72991. View

3.
Zeki S, Watson J, Lueck C, Friston K, Kennard C, Frackowiak R . A direct demonstration of functional specialization in human visual cortex. J Neurosci. 1991; 11(3):641-9. PMC: 6575357. View

4.
Watson J, Myers R, Frackowiak R, Hajnal J, Woods R, Mazziotta J . Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex. 1993; 3(2):79-94. DOI: 10.1093/cercor/3.2.79. View

5.
Neville H, Lawson D . Attention to central and peripheral visual space in a movement detection task: an event-related potential and behavioral study. II. Congenitally deaf adults. Brain Res. 1987; 405(2):268-83. DOI: 10.1016/0006-8993(87)90296-4. View