» Articles » PMID: 11264394

Human Immunodeficiency Virus Type 1 Particles Pseudotyped with Envelope Proteins That Fuse at Low PH No Longer Require Nef for Optimal Infectivity

Overview
Journal J Virol
Date 2001 Mar 27
PMID 11264394
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

We have investigated the effects of Nef on infectivity in the context of various viral envelope proteins. These experiments were performed with a minimal vector system where Nef is the only accessory protein present. Our results support the hypothesis that the route of entry influences the ability of Nef to enhance human immunodeficiency virus (HIV) infectivity. We show that HIV particles pseudotyped with Ebola virus glycoprotein or vesicular stomatitis virus glycoprotein (VSV-G), which fuse at low pH, do not require Nef for optimal infectivity. In contrast, Nef significantly enhances the infectivity of virus particles that contain envelope proteins that fuse at neutral pH (CCR5-dependent HIV Env, CXCR4-dependent HIV Env, or amphotropic murine leukemia virus Env). In addition, our results demonstrate that virus particles containing mixed CXCR4-dependent HIV and VSV-G envelope proteins show a conditional requirement for Nef for optimal infectivity, depending on which protein is allowed to facilitate entry.

Citing Articles

Fusogenic structural changes in arenavirus glycoproteins are associated with viroporin activity.

Zhang Y, York J, Brindley M, Nunberg J, Melikyan G PLoS Pathog. 2023; 19(7):e1011217.

PMID: 37494374 PMC: 10406333. DOI: 10.1371/journal.ppat.1011217.


The host cytoskeleton: a key regulator of early HIV-1 infection.

Stephens C, Naghavi M FEBS J. 2022; 291(9):1835-1848.

PMID: 36527282 PMC: 10272291. DOI: 10.1111/febs.16706.


Highly efficient intercellular spreading of protein misfolding mediated by viral ligand-receptor interactions.

Liu S, Hossinger A, Heumuller S, Hornberger A, Buravlova O, Konstantoulea K Nat Commun. 2021; 12(1):5739.

PMID: 34667166 PMC: 8526834. DOI: 10.1038/s41467-021-25855-2.


Mechanisms of Immune Evasion by Ebola Virus.

Bhattacharyya S Adv Exp Med Biol. 2021; 1313:15-22.

PMID: 34661889 DOI: 10.1007/978-3-030-67452-6_2.


HIV-1 capsid exploitation of the host microtubule cytoskeleton during early infection.

Naghavi M Retrovirology. 2021; 18(1):19.

PMID: 34229718 PMC: 8259435. DOI: 10.1186/s12977-021-00563-3.


References
1.
Chan S, Speck R, Ma M, Goldsmith M . Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Virol. 2000; 74(10):4933-7. PMC: 112022. DOI: 10.1128/jvi.74.10.4933-4937.2000. View

2.
Kotov A, Zhou J, Flicker P, Aiken C . Association of Nef with the human immunodeficiency virus type 1 core. J Virol. 1999; 73(10):8824-30. PMC: 112905. DOI: 10.1128/JVI.73.10.8824-8830.1999. View

3.
Matlin K, Reggio H, Helenius A, Simons K . Pathway of vesicular stomatitis virus entry leading to infection. J Mol Biol. 1982; 156(3):609-31. DOI: 10.1016/0022-2836(82)90269-8. View

4.
Yamada S, Ohnishi S . Vesicular stomatitis virus binds and fuses with phospholipid domain in target cell membranes. Biochemistry. 1986; 25(12):3703-8. DOI: 10.1021/bi00360a034. View

5.
Gerard R, Gluzman Y . New host cell system for regulated simian virus 40 DNA replication. Mol Cell Biol. 1985; 5(11):3231-40. PMC: 369139. DOI: 10.1128/mcb.5.11.3231-3240.1985. View