Liao C, Priyanka P, Lai Y, Rao C, Lu T
ACS Synth Biol. 2024; 13(9):2718-2732.
PMID: 39120961
PMC: 11415281.
DOI: 10.1021/acssynbio.3c00537.
Chure G, Cremer J
Elife. 2023; 12.
PMID: 36896805
PMC: 10110240.
DOI: 10.7554/eLife.84878.
Le L, Zhu K, Su H
Biophys J. 2022; 122(3):544-553.
PMID: 36564946
PMC: 9941725.
DOI: 10.1016/j.bpj.2022.12.028.
Maheshwari A, Sunol A, Gonzalez E, Endy D, Zia R
mBio. 2022; 14(1):e0286522.
PMID: 36537810
PMC: 9973364.
DOI: 10.1128/mbio.02865-22.
Sun Y, Shao X, Zhang Y, Han L, Huang J, Xie Y
Cell Biosci. 2022; 12(1):147.
PMID: 36064743
PMC: 9446538.
DOI: 10.1186/s13578-022-00884-6.
Signal Recognition Particle Suppressor Screening Reveals the Regulation of Membrane Protein Targeting by the Translation Rate.
Zhao L, Cui Y, Fu G, Xu Z, Liao X, Zhang D
mBio. 2021; 12(1).
PMID: 33436432
PMC: 7844537.
DOI: 10.1128/mBio.02373-20.
Ribosome assembly defects subvert initiation Factor3 mediated scrutiny of bona fide start signal.
Sharma H, Anand B
Nucleic Acids Res. 2019; 47(21):11368-11386.
PMID: 31586395
PMC: 6868393.
DOI: 10.1093/nar/gkz825.
Near Saturation of Ribosomal L7/L12 Binding Sites with Ternary Complexes in Slowly Growing E. coli.
Mustafi M, Weisshaar J
J Mol Biol. 2019; 431(12):2343-2353.
PMID: 31051175
PMC: 6554028.
DOI: 10.1016/j.jmb.2019.04.037.
Escherichia coli translation strategies differ across carbon, nitrogen and phosphorus limitation conditions.
Li S, Li Z, Park J, King C, Rabinowitz J, Wingreen N
Nat Microbiol. 2018; 3(8):939-947.
PMID: 30038306
PMC: 6278830.
DOI: 10.1038/s41564-018-0199-2.
Slowdown of Translational Elongation in under Hyperosmotic Stress.
Dai X, Zhu M, Warren M, Balakrishnan R, Okano H, Williamson J
mBio. 2018; 9(1).
PMID: 29440576
PMC: 5821080.
DOI: 10.1128/mBio.02375-17.
Kinetic modeling predicts a stimulatory role for ribosome collisions at elongation stall sites in bacteria.
Ferrin M, Subramaniam A
Elife. 2017; 6.
PMID: 28498106
PMC: 5446239.
DOI: 10.7554/eLife.23629.
Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth.
Dai X, Zhu M, Warren M, Balakrishnan R, Patsalo V, Okano H
Nat Microbiol. 2016; 2:16231.
PMID: 27941827
PMC: 5346290.
DOI: 10.1038/nmicrobiol.2016.231.
Real time determination of bacterial in vivo ribosome translation elongation speed based on LacZα complementation system.
Zhu M, Dai X, Wang Y
Nucleic Acids Res. 2016; 44(20):e155.
PMID: 27903884
PMC: 5175348.
DOI: 10.1093/nar/gkw698.
Bacterial growth laws reflect the evolutionary importance of energy efficiency.
Maitra A, Dill K
Proc Natl Acad Sci U S A. 2014; 112(2):406-11.
PMID: 25548180
PMC: 4299221.
DOI: 10.1073/pnas.1421138111.
Molecular crowding limits translation and cell growth.
Klumpp S, Scott M, Pedersen S, Hwa T
Proc Natl Acad Sci U S A. 2013; 110(42):16754-9.
PMID: 24082144
PMC: 3801028.
DOI: 10.1073/pnas.1310377110.
A bistable hysteretic switch in an activator-repressor regulated restriction-modification system.
Williams K, Savageau M, Blumenthal R
Nucleic Acids Res. 2013; 41(12):6045-57.
PMID: 23630319
PMC: 3695507.
DOI: 10.1093/nar/gkt324.
In vivo biochemistry in bacterial cells using FRAP: insight into the translation cycle.
Montero Llopis P, Sliusarenko O, Heinritz J, Jacobs-Wagner C
Biophys J. 2012; 103(9):1848-59.
PMID: 23199913
PMC: 3491719.
DOI: 10.1016/j.bpj.2012.09.035.
Unconventional initiator tRNAs sustain Escherichia coli.
Samhita L, Shetty S, Varshney U
Proc Natl Acad Sci U S A. 2012; 109(32):13058-63.
PMID: 22829667
PMC: 3420168.
DOI: 10.1073/pnas.1207868109.
Effect of temperature on in vivo protein synthetic capacity in Escherichia coli.
Farewell A, Neidhardt F
J Bacteriol. 1998; 180(17):4704-10.
PMID: 9721314
PMC: 107486.
DOI: 10.1128/JB.180.17.4704-4710.1998.
Growth-rate-dependent adjustment of ribosome function in the fungus Mucor racemosus.
Orlowski M
Biochem J. 1981; 196(2):403-10.
PMID: 7316986
PMC: 1163011.
DOI: 10.1042/bj1960403.