» Articles » PMID: 11060283

Heterogeneity Within Animal Thioredoxin Reductases. Evidence for Alternative First Exon Splicing

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2000 Nov 4
PMID 11060283
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Animal thioredoxin reductases (TRs) are selenocysteine-containing flavoenzymes that utilize NADPH for reduction of thioredoxins and other protein and nonprotein substrates. Three types of mammalian TRs are known, with TR1 being a cytosolic enzyme, and TR3, a mitochondrial enzyme. Previously characterized TR1 and TR3 occurred as homodimers of 55-57-kDa subunits. We report here that TR1 isolated from mouse liver, mouse liver tumor, and a human T-cell line exhibited extensive heterogeneity as detected by electrophoretic, immunoblot, and mass spectrometry analyses. In particular, a 67-kDa band of TR1 was detected. Furthermore, a novel form of mouse TR1 cDNA encoding a 67-kDa selenoprotein subunit with an additional N-terminal sequence was identified. Subsequent homology analyses revealed three distinct isoforms of mouse and rat TR1 mRNA. These forms differed in 5' sequences that resulted from the alternative use of the first three exons but had common downstream sequences. Similarly, expression of multiple mRNA forms was observed for human TR3 and Drosophila TR. In these genes, alternative first exon splicing resulted in the formation of predicted mitochondrial and cytosolic proteins. In addition, a human TR3 gene overlapped with the gene for catechol-O-methyltransferase (COMT) on a complementary DNA strand, such that mitochondrial TR3 and membrane-bound COMT mRNAs had common first exon sequences; however, transcription start sites for predicted cytosolic TR3 and soluble COMT forms were separated by approximately 30 kilobases. Thus, this study demonstrates a remarkable heterogeneity within TRs, which, at least in part, results from evolutionary conserved genetic mechanisms employing alternative first exon splicing. Multiple transcription start sites within TR genes may be relevant to complex regulation of expression and/or organelle- and cell type-specific location of animal thioredoxin reductases.

Citing Articles

Comprehensive chemical proteomics analyses reveal that the new TRi-1 and TRi-2 compounds are more specific thioredoxin reductase 1 inhibitors than auranofin.

Sabatier P, Beusch C, Gencheva R, Cheng Q, Zubarev R, Arner E Redox Biol. 2021; 48:102184.

PMID: 34788728 PMC: 8591550. DOI: 10.1016/j.redox.2021.102184.


An unusual thioredoxin system in the facultative parasite Acanthamoeba castellanii.

Leitsch D, Loufouma Mbouaka A, Kohsler M, Muller N, Walochnik J Cell Mol Life Sci. 2021; 78(7):3673-3689.

PMID: 33599799 PMC: 8038987. DOI: 10.1007/s00018-021-03786-x.


Thioredoxin 1 is upregulated in the bone and bone marrow following experimental myocardial infarction: evidence for a remote organ response.

Godoy J, Pittrich S, Slavic S, Lillig C, Hanschmann E, Erben R Histochem Cell Biol. 2020; 155(1):89-99.

PMID: 33161477 PMC: 7847876. DOI: 10.1007/s00418-020-01939-w.


Effects of Mammalian Thioredoxin Reductase Inhibitors.

Arner E Handb Exp Pharmacol. 2020; 264:289-309.

PMID: 32767140 DOI: 10.1007/164_2020_393.


RNA-Seq provides new insights on the relative mRNA abundance of antioxidant components during mouse liver development.

Wu K, Cui J, Liu J, Lu H, Zhong X, Klaassen C Free Radic Biol Med. 2019; 134:335-342.

PMID: 30659941 PMC: 6588412. DOI: 10.1016/j.freeradbiomed.2019.01.017.