» Articles » PMID: 10880392

Disruption of Redox Homeostasis in Tumor Necrosis Factor-induced Apoptosis in a Murine Hepatocyte Cell Line

Overview
Journal Am J Pathol
Publisher Elsevier
Specialty Pathology
Date 2000 Jul 6
PMID 10880392
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Tumor necrosis factor (TNF) is a mediator of the acute phase response in the liver and can initiate proliferation and cause cell death in hepatocytes. We investigated the mechanisms by which TNF causes apoptosis in hepatocytes focusing on the role of oxidative stress, antioxidant defenses, and mitochondrial damage. The studies were conducted in cultured AML12 cells, a line of differentiated murine hepatocytes. As is the case for hepatocytes in vivo, AML12 cells were not sensitive to cell death by TNF alone, but died by apoptosis when exposed to TNF and a small dose of actinomycin D (Act D). Morphological signs of apoptosis were not detected until 6 hours after the treatment and by 18 hours approximately 50% of the cells had died. Exposure of the cells to TNF+Act D did not block NFkappaB nuclear translocation, DNA binding, or its overall transactivation capacity. Induction of apoptosis was characterized by oxidative stress indicated by the loss of NAD(P)H and glutathione followed by mitochondrial damage that included loss of mitochondrial membrane potential, inner membrane structural damage, and mitochondrial condensation. These changes coincided with cytochrome C release and the activation of caspases-8, -9, and -3. TNF-induced apoptosis was dependent on glutathione levels. In cells with decreased levels of glutathione, TNF by itself in the absence of transcriptional blocking acted as an apoptotic agent. Conversely, the antioxidant alpha-lipoic acid, that protected against the loss of glutathione in cells exposed to TNF+Act D completely prevented mitochondrial damage, caspase activation, cytochrome C release, and apoptosis. The results demonstrate that apoptosis induced by TNF+Act D in AML12 cells involves oxidative injury and mitochondrial damage. As injury was regulated to a larger extent by the glutathione content of the cells, we suggest that the combination of TNF+Act D causes apoptosis because Act D blocks the transcription of genes required for antioxidant defenses.

Citing Articles

Targeting the Metabolic Paradigms in Cancer and Diabetes.

Bosso M, Haddad D, Madhoun A, Al-Mulla F Biomedicines. 2024; 12(1).

PMID: 38255314 PMC: 10813379. DOI: 10.3390/biomedicines12010211.


Hemoadsorption Improves Survival of Rats Exposed to an Acutely Lethal Dose of Aflatoxin B.

Ruggeberg K, OSullivan P, Kovacs T, Dawson K, Capponi V, Chan P Sci Rep. 2020; 10(1):799.

PMID: 31964964 PMC: 6972926. DOI: 10.1038/s41598-020-57727-y.


Multi-Acting Mitochondria-Targeted Platinum(IV) Prodrugs of Kiteplatin with α-Lipoic Acid in the Axial Positions.

Savino S, Marzano C, Gandin V, Hoeschele J, Natile G, Margiotta N Int J Mol Sci. 2018; 19(7).

PMID: 30011897 PMC: 6073472. DOI: 10.3390/ijms19072050.


Drug-Induced Liver Injury: Cascade of Events Leading to Cell Death, Apoptosis or Necrosis.

Iorga A, Dara L, Kaplowitz N Int J Mol Sci. 2017; 18(5).

PMID: 28486401 PMC: 5454931. DOI: 10.3390/ijms18051018.


TAMH: A Useful In Vitro Model for Assessing Hepatotoxic Mechanisms.

Davis M, Stamper B Biomed Res Int. 2017; 2016:4780872.

PMID: 28074186 PMC: 5198153. DOI: 10.1155/2016/4780872.


References
1.
Manna S, Kuo M, Aggarwal B . Overexpression of gamma-glutamylcysteine synthetase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappa B and activator protein-1. Oncogene. 1999; 18(30):4371-82. DOI: 10.1038/sj.onc.1202811. View

2.
Gross A, McDonnell J, Korsmeyer S . BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999; 13(15):1899-911. DOI: 10.1101/gad.13.15.1899. View

3.
Macho A, Castedo M, Marchetti P, Aguilar J, Decaudin D, Zamzami N . Mitochondrial dysfunctions in circulating T lymphocytes from human immunodeficiency virus-1 carriers. Blood. 1995; 86(7):2481-7. View

4.
Mehlen P, Kretz-Remy C, Preville X, Arrigo A . Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death. EMBO J. 1996; 15(11):2695-706. PMC: 450205. View

5.
Baldwin Jr A . The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996; 14:649-83. DOI: 10.1146/annurev.immunol.14.1.649. View