» Articles » PMID: 9781393

The Dynamics of Folic Acid Metabolism in an Adult Given a Small Tracer Dose of 14C-folic Acid

Overview
Date 1998 Oct 22
PMID 9781393
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Folate is an essential nutrient that is involved in many metabolic pathways, including amino acid interconversions and nucleotide (DNA) synthesis. In genetically susceptible individuals and populations, dysfunction of folate metabolism is associated with severe illness. Despite the importance of folate, major gaps exist in our quantitative understanding of folate metabolism in humans. The gaps exist because folate metabolism is complex, a suitable animal model that mimics human folate metabolism has not been identified, and suitable experimental protocols for in vivo studies in humans are not developed. In general, previous studies of folate metabolism have used large doses of high specific activity tritium and 14C-labeled folates in clinical patients. While stable isotopes such as deuterium and 13C-labeled folate are viewed as ethical alternatives to radiolabeled folates for studying metabolism, the lack of sensitive mass spectrometry methods to quantify them has impeded advancement of the field using this approach. In this chapter, we describe a new approach that uses a major analytical breakthrough, Accelerator Mass Spectrometry (AMS). Because AMS can detect attomole concentrations of 14C, small radioactive dosages (nCi) can be safely administered to humans and traced over long periods of time. The needed dosages are sufficiently small that the total radiation exposure is only a fraction of the natural annual background radiation of Americans, and the generated laboratory waste may legally be classified non-radioactive in many cases. The availability of AMS has permitted the longest (202 d) and most detailed study to date of folate metabolism in a healthy adult human volunteer. Here we demonstrate the feasibility of our approach and illustrate its potential by determining empirical kinetic values of folate metabolism. Our data indicate that the mean sojourn time for folate is in the range of 93 to 120 d. It took > or = 350 d for the absorbed portion of small bolus dose of 14C-folic acid to be eliminated completely from the body.

Citing Articles

The development and evolution of biological AMS at Livermore: a perspective.

Bench G Bioanalysis. 2025; 17(5):345-354.

PMID: 39902785 PMC: 11875510. DOI: 10.1080/17576180.2025.2460391.


Knowledge gaps in understanding the metabolic and clinical effects of excess folates/folic acid: a summary, and perspectives, from an NIH workshop.

Maruvada P, Stover P, Mason J, Bailey R, Davis C, Field M Am J Clin Nutr. 2020; 112(5):1390-1403.

PMID: 33022704 PMC: 7657327. DOI: 10.1093/ajcn/nqaa259.


Recent Progress of Polymeric Nanogels for Gene Delivery.

Kandil R, Merkel O Curr Opin Colloid Interface Sci. 2019; 39:11-23.

PMID: 30853837 PMC: 6400264. DOI: 10.1016/j.cocis.2019.01.005.


Opportunities in low-level radiocarbon microtracing: applications and new technology.

Vuong L, Song Q, Lee H, Roffel A, Shin S, Shin Y Future Sci OA. 2016; 2(1):FSO74.

PMID: 28031933 PMC: 5137946. DOI: 10.4155/fso.15.74.


Role of folic acid in nitric oxide bioavailability and vascular endothelial function.

Stanhewicz A, Kenney W Nutr Rev. 2016; 75(1):61-70.

PMID: 27974600 PMC: 5155615. DOI: 10.1093/nutrit/nuw053.