» Articles » PMID: 9746549

Simultaneous Measurements of Actin Filament Turnover, Filament Fraction, and Monomer Diffusion in Endothelial Cells

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1998 Sep 24
PMID 9746549
Citations 69
Authors
Affiliations
Soon will be listed here.
Abstract

The analogous techniques of photoactivation of fluorescence (PAF) and fluorescence recovery after photobleaching (FRAP) have been applied previously to the study of actin dynamics in living cells. Traditionally, separate experiments estimate the mobility of actin monomer or the lifetime of actin filaments. A mathematical description of the dynamics of the actin cytoskeleton, however, predicts that the evolution of fluorescence in PAF and FRAP experiments depends simultaneously on the diffusion coefficient of actin monomer, D, the fraction of actin in filaments, FF, and the lifetime of actin filaments, tau (, Biophys. J. 69:1674-1682). Here we report the application of this mathematical model to the interpretation of PAF and FRAP experiments in subconfluent bovine aortic endothelial cells (BAECs). The following parameters apply for actin in the bulk cytoskeleton of subconfluent BAECs. PAF: D = 3.1 +/- 0.4 x 10(-8) cm2/s, FF = 0.36 +/- 0.04, tau = 7.5 +/- 2.0 min. FRAP: D = 5.8 +/- 1.2 x 10(-8) cm2/s, FF = 0.5 +/- 0.04, tau = 4.8 +/- 0.97 min. Differences in the parameters are attributed to differences in the actin derivatives employed in the two studies and not to inherent differences in the PAF and FRAP techniques. Control experiments confirm the modeling assumption that the evolution of fluorescence is dominated by the diffusion of actin monomer, and the cyclic turnover of actin filaments, but not by filament diffusion. The work establishes the dynamic state of actin in subconfluent endothelial cells and provides an improved framework for future applications of PAF and FRAP.

Citing Articles

G-actin diffusion is insufficient to achieve F-actin assembly in fast-treadmilling protrusions.

Appalabhotla R, Butler M, Bear J, Haugh J Biophys J. 2023; 122(18):3816-3829.

PMID: 37644720 PMC: 10541494. DOI: 10.1016/j.bpj.2023.08.022.


Targeting EB3-IPR3 Interface with Cognate Peptide Protects from Acute Respiratory Distress Syndrome.

Kwok M, Geyer M, Chan W, Zhao S, Gu L, Huang F Am J Respir Cell Mol Biol. 2023; 69(4):391-403.

PMID: 37290041 PMC: 10557916. DOI: 10.1165/rcmb.2022-0217OC.


Molecular Basis for Actin Polymerization Kinetics Modulated by Solution Crowding.

Demosthene B, Lee M, Marracino R, Heidings J, Kang E Biomolecules. 2023; 13(5).

PMID: 37238656 PMC: 10216264. DOI: 10.3390/biom13050786.


Cell reorientation on a cyclically strained substrate.

Das S, Ippolito A, McGarry P, Deshpande V PNAS Nexus. 2023; 1(5):pgac199.

PMID: 36712366 PMC: 9802216. DOI: 10.1093/pnasnexus/pgac199.


Rapid ensemble measurement of protein diffusion and probe blinking dynamics in cells.

Sehayek S, Yi X, Weiss S, Wiseman P Biophys Rep (N Y). 2022; 1(2):100015.

PMID: 36425455 PMC: 9680803. DOI: 10.1016/j.bpr.2021.100015.


References
1.
Sun H, Kwiatkowska K, Yin H . Actin monomer binding proteins. Curr Opin Cell Biol. 1995; 7(1):102-10. DOI: 10.1016/0955-0674(95)80051-4. View

2.
Bubb M, Senderowicz A, Sausville E, Duncan K, Korn E . Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J Biol Chem. 1994; 269(21):14869-71. View

3.
Booyse F, Sedlak B, RAFELSON Jr M . Culture of arterial endothelial cells: characterization and growth of bovine aortic cells. Thromb Diath Haemorrh. 1975; 34(3):825-39. View

4.
Axelrod D, Koppel D, Schlessinger J, Elson E, Webb W . Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976; 16(9):1055-69. PMC: 1334945. DOI: 10.1016/S0006-3495(76)85755-4. View

5.
Wegner A . Head to tail polymerization of actin. J Mol Biol. 1976; 108(1):139-50. DOI: 10.1016/s0022-2836(76)80100-3. View