» Articles » PMID: 9746508

4Pi-confocal Imaging in Fixed Biological Specimens

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1998 Sep 24
PMID 9746508
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

By combining the wavefronts produced by two high-aperture lenses, two-photon 4Pi-confocal microscopy allows three-dimensional imaging of transparent biological specimens with axial resolution in the 100-140-nm range. We reveal the imaging properties of a two-photon 4Pi-confocal microscope as applied to a fixed cell. We demonstrate that a fast, linear point deconvolution suffices to achieve axially superresolved 3D images in the cytoskeleton. Furthermore, we describe stringent algorithms for alignment and control of the two lenses. We also show how to compensate for the effects of a potential refractive index mismatch of the mounting medium with respect to the immersion system.

Citing Articles

Cortisol Rapidly Facilitates Glucocorticoid Receptor Translocation to the Plasma Membrane in Primary Trout Hepatocytes.

Das C, Vijayan M Biology (Basel). 2023; 12(2).

PMID: 36829586 PMC: 9953755. DOI: 10.3390/biology12020311.


Beauvericin, a cyclic peptide, inhibits inflammatory responses in macrophages by inhibiting the NF-κB pathway.

Yoo S, Kim M, Cho J Korean J Physiol Pharmacol. 2017; 21(4):449-456.

PMID: 28706459 PMC: 5507784. DOI: 10.4196/kjpp.2017.21.4.449.


Application of advanced fluorescence microscopy to the structure of meiotic chromosomes.

Carlton P Biophys Rev. 2017; 5(4):313-322.

PMID: 28510112 PMC: 5425730. DOI: 10.1007/s12551-013-0116-0.


Diverse protocols for correlative super-resolution fluorescence imaging and electron microscopy of chemically fixed samples.

Kopek B, Paez-Segala M, Shtengel G, Sochacki K, Sun M, Wang Y Nat Protoc. 2017; 12(5):916-946.

PMID: 28384138 PMC: 5514615. DOI: 10.1038/nprot.2017.017.


A guide to super-resolution fluorescence microscopy.

Schermelleh L, Heintzmann R, Leonhardt H J Cell Biol. 2010; 190(2):165-75.

PMID: 20643879 PMC: 2918923. DOI: 10.1083/jcb.201002018.


References
1.
Agard D, Sedat J . Three-dimensional architecture of a polytene nucleus. Nature. 1983; 302(5910):676-81. DOI: 10.1038/302676a0. View

2.
Bailey B, Farkas D, Taylor D, Lanni F . Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature. 1993; 366(6450):44-8. DOI: 10.1038/366044a0. View

3.
Freimann R, Pentz S, Horler H . Development of a standing-wave fluorescence microscope with high nodal plane flatness. J Microsc. 1997; 187(Pt 3):193-200. DOI: 10.1046/j.1365-2818.1997.2290789.x. View

4.
Carrington W, Lynch R, Moore E, Isenberg G, Fogarty K, Fay F . Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. Science. 1995; 268(5216):1483-7. DOI: 10.1126/science.7770772. View

5.
Hell S, Schrader M, van der Voort H . Far-field fluorescence microscopy with three-dimensional resolution in the 100-nm range. J Microsc. 1997; 187(Pt 1):1-7. DOI: 10.1046/j.1365-2818.1997.2410797.x. View