» Articles » PMID: 9671812

Microsporidian Encephalitozoon Cuniculi, a Unicellular Eukaryote with an Unusual Chromosomal Dispersion of Ribosomal Genes and a LSU RRNA Reduced to the Universal Core

Overview
Specialty Biochemistry
Date 1998 Jul 22
PMID 9671812
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

Microsporidia are eukaryotic parasites lacking mitochondria, the ribosomes of which present prokaryote-like features. In order to better understand the structural evolution of rRNA molecules in microsporidia, the 5S and rDNA genes were investigated in Encephalitozoon cuniculi . The genes are not in close proximity. Non-tandemly arranged rDNA units are on every one of the 11 chromosomes. Such a dispersion is also shown in two other Encephalitozoon species. Sequencing of the 5S rRNA coding region reveals a 120 nt long RNA which folds according to the eukaryotic consensus structural shape. In contrast, the LSU rRNA molecule is greatly reduced in length (2487 nt). This dramatic shortening is essentially due to truncation of divergent domains, most of them being removed. Most variable stems of the conserved core are also deleted, reducing the LSU rRNA to only those structural features preserved in all living cells. This suggests that the E.cuniculi LSU rRNA performs only the basic mechanisms of translation. LSU rRNA phylogenetic analysis with the BASEML program favours a relatively recent origin of the fast evolving microsporidian lineage. Therefore, the prokaryote-like ribosomal features, such as the absence of ITS2, may be derived rather than primitive characters.

Citing Articles

Paromomycin Reduces Infection in Honey Bees but Perturbs Microbiome Levels and Midgut Cell Function.

Cho R, Kogan H, Elikan A, Snow J Microorganisms. 2022; 10(6).

PMID: 35744625 PMC: 9231153. DOI: 10.3390/microorganisms10061107.


Typical structure of rRNA coding genes in diplonemids points to two independent origins of the bizarre rDNA structures of euglenozoans.

Halakuc P, Karnkowska A, Milanowski R BMC Ecol Evol. 2022; 22(1):59.

PMID: 35534840 PMC: 9082867. DOI: 10.1186/s12862-022-02014-9.


Current Therapy and Therapeutic Targets for Microsporidiosis.

Wei J, Fei Z, Pan G, Weiss L, Zhou Z Front Microbiol. 2022; 13:835390.

PMID: 35356517 PMC: 8959712. DOI: 10.3389/fmicb.2022.835390.


Looking through the Lens of the Ribosome Biogenesis Evolutionary History: Possible Implications for Archaeal Phylogeny and Eukaryogenesis.

Juttner M, Ferreira-Cerca S Mol Biol Evol. 2022; 39(4).

PMID: 35275997 PMC: 8997704. DOI: 10.1093/molbev/msac054.


Adaptation to genome decay in the structure of the smallest eukaryotic ribosome.

Nicholson D, Salamina M, Panek J, Helena-Bueno K, Brown C, Hirt R Nat Commun. 2022; 13(1):591.

PMID: 35105900 PMC: 8807834. DOI: 10.1038/s41467-022-28281-0.


References
1.
van Keulen H, Gutell R, Campbell S, Erlandsen S, Jarroll E . The nucleotide sequence of the entire ribosomal DNA operon and the structure of the large subunit rRNA of Giardia muris. J Mol Evol. 1992; 35(4):318-28. DOI: 10.1007/BF00161169. View

2.
Biderre C, Pages M, Metenier G, David D, Bata J, Prensier G . On small genomes in eukaryotic organisms: molecular karyotypes of two microsporidian species (Protozoa) parasites of vertebrates. C R Acad Sci III. 1994; 317(5):399-404. View

3.
Kibe M, Ole-Moiyoi O, Nene V, Khan B, Allsopp B, Collins N . Evidence for two single copy units in Theileria parva ribosomal RNA genes. Mol Biochem Parasitol. 1994; 66(2):249-59. DOI: 10.1016/0166-6851(94)90152-x. View

4.
Schnare M, Damberger S, Gray M, Gutell R . Comprehensive comparison of structural characteristics in eukaryotic cytoplasmic large subunit (23 S-like) ribosomal RNA. J Mol Biol. 1996; 256(4):701-19. DOI: 10.1006/jmbi.1996.0119. View

5.
Szymanski M, Specht T, Barciszewska M, Barciszewski J, Erdmann V . 5S rRNA Data Bank. Nucleic Acids Res. 1998; 26(1):156-9. PMC: 147219. DOI: 10.1093/nar/26.1.156. View