Numerical Study of the Johnston-Ogston Effect in Two-component Systems
Overview
Authors
Affiliations
Numerical solutions of the Lamm equation are presented for systems exhibiting the Johnston--Ogston effect. From these solutions it is apparent that the movement of the maxima of the concentration gradient curves reflects the sedimentation velocity of the slow or fast components in their appropriate plateaus. A simple generalization of the Johnston--Ogston analysis is presented, valid for all centrifugation times in a radial field and sector shaped cell provided only that there exist both a plateau of the slow component by itself and the mixed plateau with both slow and fast components present.
Kokona B, Cunningham N, Quinn J, Jacobsen D, Garcia F, Galindo S Anal Biochem. 2024; 697:115720.
PMID: 39581338 PMC: 11624972. DOI: 10.1016/j.ab.2024.115720.
Sedimentation velocity FDS studies of antibodies in pooled human serum.
Correia J, Bishop G, Kyle P, Wright R, Sherwood P, Stafford W Eur Biophys J. 2023; 52(4-5):321-332.
PMID: 37160443 DOI: 10.1007/s00249-023-01652-1.
Bishop G, Correia J Eur Biophys J. 2023; 52(4-5):281-292.
PMID: 36881128 DOI: 10.1007/s00249-023-01634-3.
Correia J, Wright R, Sherwood P, Stafford W Eur Biophys J. 2020; 49(8):687-700.
PMID: 33159218 PMC: 7701085. DOI: 10.1007/s00249-020-01474-5.
Jiwani S, Huang S, Beji O, Gyasi-Antwi P, Gillis R, Adams G Polymers (Basel). 2020; 12(2).
PMID: 32050432 PMC: 7077624. DOI: 10.3390/polym12020390.