» Articles » PMID: 19103145

NUTS and BOLTS: Applications of Fluorescence-detected Sedimentation

Overview
Journal Anal Biochem
Publisher Elsevier
Specialty Biochemistry
Date 2008 Dec 24
PMID 19103145
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

Analytical ultracentrifugation is a widely used method for characterizing the solution behavior of macromolecules. However, the two commonly used detectors, absorbance and interference, impose some fundamental restrictions on the concentrations and complexity of the solutions that can be analyzed. The recent addition of a fluorescence detector for the XL-I analytical ultracentrifuge (AU-FDS) enables two different types of sedimentation experiments. First, the AU-FDS can detect picomolar concentrations of labeled solutes, allowing the characterization of very dilute solutions of macromolecules, applications we call normal use tracer sedimentation (NUTS). The great sensitivity of NUTS analysis allows the characterization of small quantities of materials and high-affinity interactions. Second, the AU-FDS allows characterization of trace quantities of labeled molecules in solutions containing high concentrations and complex mixtures of unlabeled molecules, applications we call biological on-line tracer sedimentation (BOLTS). The discrimination of BOLTS enables the size distribution of a labeled macromolecule to be determined in biological milieus such as cell lysates and serum. Examples that embody features of both NUTS and BOLTS applications are presented along with our observations on these applications.

Citing Articles

Studying C9orf72 dipeptide repeat polypeptide aggregation using an analytical ultracentrifuge equipped with fluorescence detection.

Kokona B, Cunningham N, Quinn J, Jacobsen D, Garcia F, Galindo S Anal Biochem. 2024; 697:115720.

PMID: 39581338 PMC: 11624972. DOI: 10.1016/j.ab.2024.115720.


Sedimentation velocity FDS studies of antibodies in pooled human serum.

Correia J, Bishop G, Kyle P, Wright R, Sherwood P, Stafford W Eur Biophys J. 2023; 52(4-5):321-332.

PMID: 37160443 DOI: 10.1007/s00249-023-01652-1.


On the utility of microfluidic systems to study protein interactions: advantages, challenges, and applications.

Watkin S, Bennie R, Gilkes J, Nock V, Pearce F, Dobson R Eur Biophys J. 2022; 52(4-5):459-471.

PMID: 36583735 PMC: 9801160. DOI: 10.1007/s00249-022-01626-9.


Differentiation of subnucleus-sized oligomers and nucleation-competent assemblies of the Aβ peptide.

Pauly T, Zhang T, Sternke-Hoffmann R, Nagel-Steger L, Willbold D Biophys J. 2022; 122(2):269-278.

PMID: 36529991 PMC: 9892607. DOI: 10.1016/j.bpj.2022.12.020.


A multiwavelength emission detector for analytical ultracentrifugation.

Wawra S, Onishchukov G, Maranska M, Eigler S, Walter J, Peukert W Nanoscale Adv. 2022; 1(11):4422-4432.

PMID: 36134402 PMC: 9419176. DOI: 10.1039/c9na00487d.


References
1.
Ryan T, Howlett G, Bailey M . Fluorescence detection of a lipid-induced tetrameric intermediate in amyloid fibril formation by apolipoprotein C-II. J Biol Chem. 2008; 283(50):35118-28. PMC: 3259869. DOI: 10.1074/jbc.M804004200. View

2.
Stafford W . Analysis of reversibly interacting macromolecular systems by time derivative sedimentation velocity. Methods Enzymol. 2000; 323:302-25. DOI: 10.1016/s0076-6879(00)23371-5. View

3.
Crepeau R, Conrad R, Edelstein S . UV laser scanning and fluorescence monitoring of analytical ultracentrifugation with an on-line computer system. Biophys Chem. 1976; 5(1-2):27-39. DOI: 10.1016/0301-4622(76)80024-5. View

4.
Heidelberger M, KENDALL F . A QUANTITATIVE THEORY OF THE PRECIPITIN REACTION : II. A STUDY OF AN AZOPROTEIN-ANTIBODY SYSTEM. J Exp Med. 2009; 62(4):467-83. PMC: 2133297. DOI: 10.1084/jem.62.4.467. View

5.
Philo J . Improved methods for fitting sedimentation coefficient distributions derived by time-derivative techniques. Anal Biochem. 2006; 354(2):238-46. DOI: 10.1016/j.ab.2006.04.053. View