» Articles » PMID: 9623802

Regulation of Energy Transduction and Electron Transfer in Cytochrome C Oxidase by Adenine Nucleotides

Overview
Publisher Springer
Date 1998 Jun 12
PMID 9623802
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Cytochrome c oxidase from bovine heart contains seven high-affinity binding sites for ATP or ADP and three additional only for ADP. One binding site for ATP or ADP, located at the matrix-oriented domain of the heart-type subunit VIaH, increases the H+/e- stoichiometry of the enzyme from heart or skeletal muscle from 0.5 to 1.0 when bound ATP is exchanged by ADP. Two further binding sites for ATP or ADP, located at the cytosolic and the matrix domain of subunit IV, increases the K(M) for cytochrome c and inhibit the respiratory activity at high ATP/ADP ratios, respectively. We propose that thermogenesis in mammals is related to subunit VIaL of cytochrome c oxidase with a H+/e- stoichiometry of 0.5 compared to 1.0 in the enzyme from bacteria or ectotherm animals. This hypothesis is supported by the lack of subunit VIa isoforms in cytochrome c oxidase from fish.

Citing Articles

Monomeric structure of an active form of bovine cytochrome oxidase.

Shinzawa-Itoh K, Sugimura T, Misaki T, Tadehara Y, Yamamoto S, Hanada M Proc Natl Acad Sci U S A. 2019; 116(40):19945-19951.

PMID: 31533957 PMC: 6778200. DOI: 10.1073/pnas.1907183116.


Revisiting Kadenbach: Electron flux rate through cytochrome c-oxidase determines the ATP-inhibitory effect and subsequent production of ROS.

Vogt S, Rhiel A, Weber P, Ramzan R Bioessays. 2016; 38(6):556-67.

PMID: 27171124 PMC: 5084804. DOI: 10.1002/bies.201600043.


A conserved amphipathic ligand binding region influences k-path-dependent activity of cytochrome C oxidase.

Hiser C, Buhrow L, Liu J, Kuhn L, Ferguson-Miller S Biochemistry. 2013; 52(8):1385-96.

PMID: 23351100 PMC: 3622084. DOI: 10.1021/bi3014505.


Cardiac mitochondrial matrix and respiratory complex protein phosphorylation.

Covian R, Balaban R Am J Physiol Heart Circ Physiol. 2012; 303(8):H940-66.

PMID: 22886415 PMC: 3469641. DOI: 10.1152/ajpheart.00077.2012.


Evolution of the couple cytochrome c and cytochrome c oxidase in primates.

Pierron D, Wildman D, Huttemann M, Letellier T, Grossman L Adv Exp Med Biol. 2012; 748:185-213.

PMID: 22729859 PMC: 3714796. DOI: 10.1007/978-1-4614-3573-0_8.


References
1.
KADENBACH B, Barth J, Akgun R, Freund R, Linder D, Possekel S . Regulation of mitochondrial energy generation in health and disease. Biochim Biophys Acta. 1995; 1271(1):103-9. DOI: 10.1016/0925-4439(95)00016-w. View

2.
Parsons W, Williams R, Shelton J, Luo Y, Kessler D, Richardson J . Developmental regulation of cytochrome oxidase subunit VIa isoforms in cardiac and skeletal muscle. Am J Physiol. 1996; 270(2 Pt 2):H567-74. DOI: 10.1152/ajpheart.1996.270.2.H567. View

3.
Linder D, Freund R, KADENBACH B . Species-specific expression of cytochrome c oxidase isozymes. Comp Biochem Physiol B Biochem Mol Biol. 1995; 112(3):461-9. DOI: 10.1016/0305-0491(95)00093-3. View

4.
Bonne G, Seibel P, Possekel S, Marsac C, KADENBACH B . Expression of human cytochrome c oxidase subunits during fetal development. Eur J Biochem. 1993; 217(3):1099-107. DOI: 10.1111/j.1432-1033.1993.tb18342.x. View

5.
Suarez M, Revzin A, Narlock R, Kempner E, Thompson D, Ferguson-Miller S . The functional and physical form of mammalian cytochrome c oxidase determined by gel filtration, radiation inactivation, and sedimentation equilibrium analysis. J Biol Chem. 1984; 259(22):13791-9. View