» Articles » PMID: 18759498

A Conserved Steroid Binding Site in Cytochrome C Oxidase

Overview
Journal Biochemistry
Specialty Biochemistry
Date 2008 Sep 2
PMID 18759498
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Micromolar concentrations of the bile salt deoxycholate are shown to rescue the activity of an inactive mutant, E101A, in the K proton pathway of Rhodobacter sphaeroides cytochrome c oxidase. A crystal structure of the wild-type enzyme reveals, as predicted, deoxycholate bound with its carboxyl group at the entrance of the K path. Since cholate is a known potent inhibitor of bovine oxidase and is seen in a similar position in the bovine structure, the crystallographically defined, conserved steroid binding site could reveal a regulatory site for steroids or structurally related molecules that act on the essential K proton path.

Citing Articles

The flexible chain: regulation of structure and activity of ETC complexes defines rate of ATP synthesis and sites of superoxide generation.

Bochkova Z, Baizhumanov A, Yusipovich A, Morozova K, Nikelshparg E, Fedotova A Biophys Rev. 2025; 17(1):55-88.

PMID: 40060020 PMC: 11885220. DOI: 10.1007/s12551-025-01270-5.


Cholesterol Attenuates the Pore-Forming Capacity of CARC-Containing Amphipathic Peptides.

Oleynikov I, Firsov A, Azarkina N, Vygodina T Int J Mol Sci. 2025; 26(2).

PMID: 39859248 PMC: 11765261. DOI: 10.3390/ijms26020533.


Interaction of Terminal Oxidases with Amphipathic Molecules.

Azarkina N, Borisov V, Oleynikov I, Sudakov R, Vygodina T Int J Mol Sci. 2023; 24(7).

PMID: 37047401 PMC: 10095113. DOI: 10.3390/ijms24076428.


Interaction of Amphipathic Peptide from Influenza Virus M1 Protein with Mitochondrial Cytochrome Oxidase.

Oleynikov I, Sudakov R, Radyukhin V, Arutyunyan A, Azarkina N, Vygodina T Int J Mol Sci. 2023; 24(4).

PMID: 36835528 PMC: 9961948. DOI: 10.3390/ijms24044119.


Structural basis of mammalian complex IV inhibition by steroids.

Di Trani J, Moe A, Riepl D, Saura P, Kaila V, Brzezinski P Proc Natl Acad Sci U S A. 2022; 119(30):e2205228119.

PMID: 35858451 PMC: 9335260. DOI: 10.1073/pnas.2205228119.


References
1.
KADENBACH B, Napiwotzki J, Frank V, Arnold S, Exner S, Huttemann M . Regulation of energy transduction and electron transfer in cytochrome c oxidase by adenine nucleotides. J Bioenerg Biomembr. 1998; 30(1):25-33. DOI: 10.1023/a:1020599209468. View

2.
Qin L, Mills D, Hiser C, Murphree A, Garavito R, Ferguson-Miller S . Crystallographic location and mutational analysis of Zn and Cd inhibitory sites and role of lipidic carboxylates in rescuing proton path mutants in cytochrome c oxidase. Biochemistry. 2007; 46(21):6239-48. PMC: 2387241. DOI: 10.1021/bi700173w. View

3.
Qin L, Hiser C, Mulichak A, Garavito R, Ferguson-Miller S . Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase. Proc Natl Acad Sci U S A. 2006; 103(44):16117-22. PMC: 1616942. DOI: 10.1073/pnas.0606149103. View

4.
Simon N, Jolliet P, Morin C, Zini R, Urien S, Tillement J . Glucocorticoids decrease cytochrome c oxidase activity of isolated rat kidney mitochondria. FEBS Lett. 1998; 435(1):25-8. DOI: 10.1016/s0014-5793(98)01033-3. View

5.
Yu C, Yu L, King T . Studies on cytochrome oxidase. Interactions of the cytochrome oxidase protein with phospholipids and cytochrome c. J Biol Chem. 1975; 250(4):1383-92. View