» Articles » PMID: 9520438

Mariner Transposition and Transformation of the Yellow Fever Mosquito, Aedes Aegypti

Overview
Specialty Science
Date 1998 May 9
PMID 9520438
Citations 124
Authors
Affiliations
Soon will be listed here.
Abstract

The mariner transposable element is capable of interplasmid transposition in the embryonic soma of the yellow fever mosquito, Aedes aegypti. To determine if this demonstrated mobility could be utilized to genetically transform the mosquito, a modified mariner element marked with a wild-type allele of the Drosophila melanogaster cinnabar gene was microinjected into embryos of a kynurenine hydroxylase-deficient, white-eyed recipient strain. Three of 69 fertile male founders resulting from the microinjected embryos produced families with colored-eyed progeny individuals, a transformation rate of 4%. The transgene-mediated complementation of eye color was observed to segregate in a Mendelian manner, although one insertion segregates with the recessive allele (female-determining) of the sex-determining locus, and a separate insertion is homozygous lethal. Molecular analysis of selected transformed families demonstrated that a single complete copy of the construct had integrated independently in each case and that it had done so in a transposase-mediated manner. The availability of a mariner transformation system greatly enhances our ability to study and manipulate this important vector species.

Citing Articles

Challenges in developing a split drive targeting dsx for the genetic control of the invasive malaria vector Anopheles stephensi.

Larrosa-Godall M, Ang J, Leftwich P, Gonzalez E, Shackleford L, Nevard K Parasit Vectors. 2025; 18(1):46.

PMID: 39920845 PMC: 11806748. DOI: 10.1186/s13071-025-06688-0.


A genome-wide CRISPR screen in mosquito cells identifies essential genes and required components of clodronate liposome function.

Mameli E, Samantsidis G, Viswanatha R, Kwon H, Hall D, Butnaru M bioRxiv. 2024; .

PMID: 39386635 PMC: 11463579. DOI: 10.1101/2024.09.24.614595.


A multiplexed, confinable CRISPR/Cas9 gene drive can propagate in caged Aedes aegypti populations.

Anderson M, Gonzalez E, Edgington M, Ang J, Purusothaman D, Shackleford L Nat Commun. 2024; 15(1):729.

PMID: 38272895 PMC: 10810878. DOI: 10.1038/s41467-024-44956-2.


Optimizing CRE and PhiC31 mediated recombination in .

Paladino L, Wilson R, Tng P, Dhokiya V, Keen E, Cuber P Front Bioeng Biotechnol. 2023; 11:1254863.

PMID: 37811374 PMC: 10557486. DOI: 10.3389/fbioe.2023.1254863.


Quantifying Fitness Costs in Transgenic Aedes aegypti Mosquitoes.

Williams A, Sanchez-Vargas I, Martin L, Martin-Martin I, Bennett S, Olson K J Vis Exp. 2023; (199).

PMID: 37782092 PMC: 11531664. DOI: 10.3791/65136.


References
1.
Cornel A, Benedict M, Rafferty C, HOWELLS A, Collins F . Transient expression of the Drosophila melanogaster cinnabar gene rescues eye color in the white eye (WE) strain of Aedes aegypti. Insect Biochem Mol Biol. 1998; 27(12):993-7. DOI: 10.1016/s0965-1748(97)00084-2. View

2.
Spradling A, Rubin G . Transposition of cloned P elements into Drosophila germ line chromosomes. Science. 1982; 218(4570):341-7. DOI: 10.1126/science.6289435. View

3.
Medhora M, Maruyama K, Hartl D . Molecular and functional analysis of the mariner mutator element Mos1 in Drosophila. Genetics. 1991; 128(2):311-8. PMC: 1204469. DOI: 10.1093/genetics/128.2.311. View

4.
Loukeris T, Livadaras I, Arca B, Zabalou S, Savakis C . Gene transfer into the medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Science. 1995; 270(5244):2002-5. DOI: 10.1126/science.270.5244.2002. View

5.
Henikoff S . Dosage-dependent modification of position-effect variegation in Drosophila. Bioessays. 1996; 18(5):401-9. DOI: 10.1002/bies.950180510. View