» Articles » PMID: 9353343

Modulation of AUUUA Response Element Binding by Heterogeneous Nuclear Ribonucleoprotein A1 in Human T Lymphocytes. The Roles of Cytoplasmic Location, Transcription, and Phosphorylation

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 1997 Nov 14
PMID 9353343
Citations 58
Authors
Affiliations
Soon will be listed here.
Abstract

The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) shuttles between the cytoplasm and nucleus and plays important roles in RNA metabolism. Whereas nuclear hnRNP A1 has been shown to bind intronic sequences and modulate splicing, cytoplasmic hnRNP A1 is associated with poly(A)+ RNA, indicating different RNA ligand specificity. Previous studies indicated that cytoplasmic hnRNP A1 is capable of high-affinity binding of reiterated AUUUA sequences (ARE) that have been shown to modulate mRNA turnover and translation. Through a combination of two-dimensional gel and proteolysis studies, we establish hnRNP A1 (or structurally related proteins that are post-translationally regulated in an identical manner) as the dominant cytoplasmic protein in human T lymphocytes capable of interacting with the ARE contained within the context of full-length granulocyte-macrophage colony-stimulating factor mRNA. We additionally demonstrate that cytoplasmic hnRNP A1 preferentially binds ARE relative to pre-mRNAs in both cross-linking and mobility shift experiments. RNA polymerase II inhibition increased the binding of ARE (AUBP activity) and poly(U)-Sepharose by cytoplasmic hnRNP A1, while nuclear hnRNP A1 binding was unaffected. Nuclear and cytoplasmic hnRNP A1 could be distinguished by the differential sensitivity of their RNA binding to diamide and N-ethylmaleimide. The increase in AUBP activity of cytoplasmic hnRNP A1 following RNA polymerase II inhibition correlated with serine-threonine dephosphorylation, as determined by inhibitor and metabolic labeling studies. Thus, cytoplasmic and nuclear hnRNP A1 exhibit different RNA binding profiles, perhaps transduced through serine-threonine phosphorylation. These findings are relevant to the specific ability of hnRNP A1 to serve distinct roles in post-transcriptional regulation of gene expression in both the nucleus and cytoplasm.

Citing Articles

Interferon-Regulated Expression of Cellular Splicing Factors Modulates Multiple Levels of HIV-1 Gene Expression and Replication.

Roesmann F, Muller L, Klaassen K, Hess S, Widera M Viruses. 2024; 16(6).

PMID: 38932230 PMC: 11209495. DOI: 10.3390/v16060938.


The interferon-regulated host factor hnRNPA0 modulates HIV-1 production by interference with LTR activity, mRNA trafficking, and programmed ribosomal frameshifting.

Roesmann F, Sertznig H, Klaassen K, Wilhelm A, Heininger D, Hess S J Virol. 2024; 98(7):e0053424.

PMID: 38899932 PMC: 11265465. DOI: 10.1128/jvi.00534-24.


Downregulation of HNRNPA1 induced neoantigen generation via regulating alternative splicing.

Sun Y, Xiong B, Shuai X, Li J, Wang C, Guo J Mol Med. 2024; 30(1):85.

PMID: 38867190 PMC: 11167825. DOI: 10.1186/s10020-024-00849-0.


Classification, replication, and transcription of .

Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C Front Microbiol. 2024; 14:1291761.

PMID: 38328580 PMC: 10847374. DOI: 10.3389/fmicb.2023.1291761.


Mechanisms and consequences of mRNA destabilization during viral infections.

Shehata S, Watkins J, Burke J, Parker R Virol J. 2024; 21(1):38.

PMID: 38321453 PMC: 10848536. DOI: 10.1186/s12985-024-02305-1.