Linear Mixed Models with Heterogeneous Within-cluster Variances
Overview
Authors
Affiliations
This paper describes an extension of linear mixed models to allow for heterogeneous within-cluster variances in the analysis of clustered data. Unbiased estimating equations based on quasilikelihood/pseudolikelihood and method of moments are introduced and are shown to give consistent estimators of the regression coefficients, variance components, and heterogeneity parameter under regularity conditions. Cluster-specific random effects and variances are predicted by the posterior modes. The method is illustrated through an analysis of menstrual diary data and its properties are evaluated in a simulation study.
A General Framework for the Multiple Nonparametric Behrens-Fisher Problem With Dependent Replicates.
Sprunken E, Mertens R, Konietschke F Stat Med. 2024; 43(30):5650-5666.
PMID: 39524015 PMC: 11639657. DOI: 10.1002/sim.10262.
German C, Sinsheimer J, Zhou J, Zhou H Biometrics. 2021; 78(4):1313-1327.
PMID: 34142722 PMC: 8683571. DOI: 10.1111/biom.13506.
Fukaya K, Kawamori A, Osada Y, Kitazawa M, Ishiguro M Stat Med. 2017; 36(21):3361-3379.
PMID: 28543214 PMC: 5575519. DOI: 10.1002/sim.7345.
A joint modeling approach for multivariate survival data with random length.
Liu S, Manatunga A, Peng L, Marcus M Biometrics. 2016; 73(2):666-677.
PMID: 27704528 PMC: 5801737. DOI: 10.1111/biom.12588.
A Bayesian joint model of menstrual cycle length and fecundity.
Lum K, Sundaram R, Buck Louis G, Louis T Biometrics. 2015; 72(1):193-203.
PMID: 26295923 PMC: 4761533. DOI: 10.1111/biom.12379.