» Articles » PMID: 9285772

The Glucose Transport System of the Hyperthermophilic Anaerobic Bacterium Thermotoga Neapolitana

Overview
Date 1996 Aug 1
PMID 9285772
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

The glucose transport system of the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DOG). T. neapolitana accumulated 2-DOG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external source of energy, such as pyruvate, and was inhibited by arsenate and gramicidin D. There was no phosphoenolpyruvate-dependent phosphorylation of glucose, 2-DOG, or fructose by cell extracts or toluene-treated cells, indicating the absence of a phosphoenolpyruvate:sugar phosphotransferase system. These data indicate that D-glucose is taken up by T. neapolitana via an active transport system that is energized by an ion gradient generated by ATP, derived from substrate-level phosphorylation.

Citing Articles

Effect of Cultivation Parameters on Fermentation and Hydrogen Production in the Phylum .

Lanzilli M, Esercizio N, Vastano M, Xu Z, Nuzzo G, Gallo C Int J Mol Sci. 2021; 22(1).

PMID: 33396970 PMC: 7795431. DOI: 10.3390/ijms22010341.


Identification of the ATPase Subunit of the Primary Maltose Transporter in the Hyperthermophilic Anaerobe Thermotoga maritima.

Singh R, White D, Blum P Appl Environ Microbiol. 2017; 83(18).

PMID: 28687653 PMC: 5583491. DOI: 10.1128/AEM.00930-17.


Contribution of Pentose Catabolism to Molecular Hydrogen Formation by Targeted Disruption of Arabinose Isomerase (araA) in the Hyperthermophilic Bacterium Thermotoga maritima.

White D, Singh R, Rudrappa D, Mateo J, Kramer L, Freese L Appl Environ Microbiol. 2016; 83(4).

PMID: 27940539 PMC: 5288831. DOI: 10.1128/AEM.02631-16.


Hyperthermophilic Thermotoga species differ with respect to specific carbohydrate transporters and glycoside hydrolases.

Frock A, Gray S, Kelly R Appl Environ Microbiol. 2012; 78(6):1978-86.

PMID: 22247137 PMC: 3298158. DOI: 10.1128/AEM.07069-11.


Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory.

Willquist K, Zeidan A, van Niel E Microb Cell Fact. 2010; 9:89.

PMID: 21092203 PMC: 3003633. DOI: 10.1186/1475-2859-9-89.


References
1.
Cook G, Janssen P, Morgan H . Uncoupler-Resistant Glucose Uptake by the Thermophilic Glycolytic Anaerobe Thermoanaerobacter thermosulfuricus (Clostridium thermohydrosulfuricum). Appl Environ Microbiol. 1993; 59(9):2984-90. PMC: 182396. DOI: 10.1128/aem.59.9.2984-2990.1993. View

2.
Kengen S, de Bok F, van Loo N, Dijkema C, Stams A, de Vos W . Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus. J Biol Chem. 1994; 269(26):17537-41. View

3.
Kornberg H, Reeves R . Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli. Biochem J. 1972; 128(5):1339-44. PMC: 1174022. DOI: 10.1042/bj1281339. View

4.
Adams M . Biochemical diversity among sulfur-dependent, hyperthermophilic microorganisms. FEMS Microbiol Rev. 1994; 15(2-3):261-77. DOI: 10.1111/j.1574-6976.1994.tb00139.x. View

5.
Gupta R, Stetter K, Woese C . Were the original eubacteria thermophiles?. Syst Appl Microbiol. 1987; 9:34-9. DOI: 10.1016/s0723-2020(87)80053-x. View