» Articles » PMID: 92025

Conformation of Gramicidin A Channel in Phospholipid Vesicles: a 13C and 19F Nuclear Magnetic Resonance Study

Overview
Specialty Science
Date 1979 Sep 1
PMID 92025
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

We have determined the conformation of the channel-forming polypeptide antibiotic gramicidin A in phosphatidylcholine vesicles by using 13C and 19F NMR spectroscopy. The models previously proposed for the conformation of the dimer channel differ in the surface localization of the NH2 and COOH termini. We have incorporated specific 13C and 19F nuclei at both the NH2, and COOH termini of gramicidin and have used 13C and 19F chemical shifts and spin lattice relaxation time measurements to determine the accessibility of these labels to three paramagnetic NMR probes--two in aqueous solution and one attached to the phosphatidylcholine fatty acid chain9 all of our results indicate that the COOH terminus of gramicidin in the channel is located near the surface of the membrane and the NH2 terminus is buried deep within the lipid bilayer. These findings strongly favor an NH2-terminal to NH2-terminal helical dimer as the major conformation for the gramicidin channel in phosphatidylcholine vesicles.

Citing Articles

Fluorine-19 NMR of integral membrane proteins illustrated with studies of GPCRs.

Didenko T, Liu J, Horst R, Stevens R, Wuthrich K Curr Opin Struct Biol. 2013; 23(5):740-747.

PMID: 23932201 PMC: 3805696. DOI: 10.1016/j.sbi.2013.07.011.


Solution NMR studies on the orientation of membrane-bound peptides and proteins by paramagnetic probes.

Schrank E, Wagner G, Zangger K Molecules. 2013; 18(7):7407-35.

PMID: 23799448 PMC: 6269851. DOI: 10.3390/molecules18077407.


Conformation and orientation of gramicidin a in oriented phospholipid bilayers measured by solid state carbon-13 NMR.

Cornell B, Separovic F, Baldassi A, Smith R Biophys J. 2009; 53(1):67-76.

PMID: 19431717 PMC: 1330122. DOI: 10.1016/S0006-3495(88)83066-2.


Proposed Mechanism for H(II) Phase Induction by Gramicidin in Model Membranes and Its Relation to Channel Formation.

Killian J, de Kruijff B Biophys J. 2009; 53(1):111-7.

PMID: 19431714 PMC: 1330128. DOI: 10.1016/s0006-3495(88)83072-8.


Transmembrane distribution of gramicidin by tryptophan energy transfer.

Boni L, Connolly A, Kleinfeld A Biophys J. 2009; 49(1):122-3.

PMID: 19431613 PMC: 1329603. DOI: 10.1016/S0006-3495(86)83619-0.


References
1.
SARGES R, WITKOP B . GRAMICIDIN A. V. THE STRUCTURE OF VALINE- AND ISOLEUCINE-GRAMICIDIN A. J Am Chem Soc. 1965; 87:2011-20. DOI: 10.1021/ja01087a027. View

2.
Chappell J, Crofts A . GRAMICIDIN AND ION TRANSPORT IN ISOLATED LIVER MITOCHONDRIA. Biochem J. 1965; 95:393-402. PMC: 1214336. DOI: 10.1042/bj0950393. View

3.
Wallace B, BLOUT E . Conformation of an oligopeptide in phospholipid vesicles. Proc Natl Acad Sci U S A. 1979; 76(4):1775-9. PMC: 383473. DOI: 10.1073/pnas.76.4.1775. View

4.
Veatch W, Fossel E, BLOUT E . The conformation of gramicidin A. Biochemistry. 1974; 13(26):5249-56. DOI: 10.1021/bi00723a001. View

5.
Veatch W, BLOUT E . The aggregation of gramicidin A in solution. Biochemistry. 1974; 13(26):5257-64. DOI: 10.1021/bi00723a002. View