Determination of the Lifetime and Force Dependence of Interactions of Single Bonds Between Surface-attached CD2 and CD48 Adhesion Molecules
Overview
Affiliations
We studied single molecular interactions between surface-attached rat CD2, a T-lymphocyte adhesion receptor, and CD48, a CD2 ligand found on antigen-presenting cells. Spherical particles were coated with decreasing densities of CD48-CD4 chimeric molecules then driven along CD2-derivatized glass surfaces under a low hydrodynamic shear rate. Particles exhibited multiple arrests of varying duration. By analyzing the dependence of arrest frequency and duration on the surface density of CD48 sites, it was concluded that (i) arrests were generated by single molecular bonds and (ii) the initial bond dissociation rate was about 7.8 s-1. The force exerted on bonds was increased from about 11 to 22 pN; the detachment rate exhibited a twofold increase. These results agree with and extend studies on the CD2-CD48 interaction by surface plasmon resonance technology, which yielded an affinity constant of approximately 10(4) M-1 and a dissociation rate of > or = 6 s-1. It is concluded that the flow chamber technology can be an useful complement to atomic force microscopy for studying interactions between isolated biomolecules, with a resolution of about 20 ms and sensitivity of a few piconewtons. Further, this technology might be extended to actual cells.
Receptor-Ligand Binding: Effect of Mechanical Factors.
Du R, Li L, Ji J, Fan Y Int J Mol Sci. 2023; 24(10).
PMID: 37240408 PMC: 10219515. DOI: 10.3390/ijms24109062.
Supported Lipid Bilayers and the Study of Two-Dimensional Binding Kinetics.
Dam T, Chouliara M, Junghans V, Jonsson P Front Mol Biosci. 2022; 9:833123.
PMID: 35252352 PMC: 8896763. DOI: 10.3389/fmolb.2022.833123.
Nanoscale Functionalized Particles with Rotation-Controlled Capture in Shear Flow.
Shave M, Kalasin S, Ying E, Santore M ACS Appl Mater Interfaces. 2018; 10(34):29058-29068.
PMID: 30109808 PMC: 6171355. DOI: 10.1021/acsami.8b05328.
Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion.
Li Z, Lee H, Zhu C Exp Cell Res. 2016; 349(1):85-94.
PMID: 27720950 PMC: 5101173. DOI: 10.1016/j.yexcr.2016.10.001.
Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa.
Lecuyer S, Rusconi R, Shen Y, Forsyth A, Vlamakis H, Kolter R Biophys J. 2011; 100(2):341-50.
PMID: 21244830 PMC: 3021681. DOI: 10.1016/j.bpj.2010.11.078.