» Articles » PMID: 8895560

Tal-1 Induces T Cell Acute Lymphoblastic Leukemia Accelerated by Casein Kinase IIalpha

Overview
Journal EMBO J
Date 1996 Oct 1
PMID 8895560
Citations 94
Authors
Affiliations
Soon will be listed here.
Abstract

Ectopic activation of the TAL-1 gene in T lymphocytes occurs in the majority of cases of human T cell acute lymphoblastic leukemia (T-ALL), yet experiments to date have failed to demonstrate a direct transforming capability for tal-1. The tal-1 gene product is a serine phosphoprotein and basic helix-loop-helix (bHLH) transcription factor known to regulate embryonic hematopoiesis. We have established a transgenic mouse model in which tal-1 mis-expression in the thymus results in the development of clonal T cell lymphoblastic leukemia/lymphoma. Thus, overexpression of tal-1 alone can be transforming, verifying its pathogenic role in human T-ALL. In addition, leukemogenesis is accelerated dramatically by transgenic co-expression of tal-1 and the catalytic subunit of casein kinase IIalpha (CKIIalpha), a serine/threonine protein kinase known to modulate the activity of other bHLH transcription factors. Although tal-1 is a substrate for CKII, the synergy of the tal-1 and CKIIalpha transgenes appears to be indirect, perhaps mediated through the E protein heterodimeric partners of tal-1. These studies prove that dysregulated tal-1 is oncogenic, providing a direct molecular explanation for the malignancies associated with TAL-1 activation in human T-ALL.

Citing Articles

Clonal evolution defines risk stratification for central nervous system leukemia in adult acute lymphoblastic leukemia.

Li J, Chen J, Wang Q, Ou J, Huang Z, Deng S Ann Hematol. 2024; 103(12):5759-5767.

PMID: 39609281 DOI: 10.1007/s00277-024-06116-w.


The role of quiescent thymic progenitors in TAL/LMO2-induced T-ALL chemotolerance.

OConnor K, Kishimoto K, Kuzma I, Wagner K, Selway J, Roderick J Leukemia. 2024; 38(5):951-962.

PMID: 38553571 PMC: 11073972. DOI: 10.1038/s41375-024-02232-8.


CK2β-regulated signaling controls B cell differentiation and function.

Quotti Tubi L, Mandato E, Canovas Nunes S, Arjomand A, Zaffino F, Manni S Front Immunol. 2023; 13:959138.

PMID: 36713383 PMC: 9874936. DOI: 10.3389/fimmu.2022.959138.


Targeting Leukemia-Initiating Cells and Leukemic Niches: The Next Therapy Station for T-Cell Acute Lymphoblastic Leukemia?.

Zhang Z, Yang K, Zhang H Cancers (Basel). 2022; 14(22).

PMID: 36428753 PMC: 9688677. DOI: 10.3390/cancers14225655.


Revisiting potential value of antitumor drugs in the treatment of COVID-19.

Zheng W, Zeng Z, Lin S, Hou P Cell Biosci. 2022; 12(1):165.

PMID: 36182930 PMC: 9526459. DOI: 10.1186/s13578-022-00899-z.


References
1.
Early P, Rogers J, Davis M, Calame K, Bond M, Wall R . Two mRNAs can be produced from a single immunoglobulin mu gene by alternative RNA processing pathways. Cell. 1980; 20(2):313-9. DOI: 10.1016/0092-8674(80)90617-0. View

2.
McGuire E, Rintoul C, Sclar G, Korsmeyer S . Thymic overexpression of Ttg-1 in transgenic mice results in T-cell acute lymphoblastic leukemia/lymphoma. Mol Cell Biol. 1992; 12(9):4186-96. PMC: 360323. DOI: 10.1128/mcb.12.9.4186-4196.1992. View

3.
Samelson L, Oshea J, Luong H, Ross P, Urdahl K, Klausner R . T cell antigen receptor phosphorylation induced by an anti-receptor antibody. J Immunol. 1987; 139(8):2708-14. View

4.
Krieg P, Melton D . In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol. 1987; 155:397-415. DOI: 10.1016/0076-6879(87)55027-3. View

5.
Goldfarb A, Goueli S, Mickelson D, Greenberg J . T-cell acute lymphoblastic leukemia--the associated gene SCL/tal codes for a 42-Kd nuclear phosphoprotein. Blood. 1992; 80(11):2858-66. View