» Articles » PMID: 8882748

Estimation of Population Pharmacokinetics Using the Gibbs Sampler

Overview
Specialty Pharmacology
Date 1995 Aug 1
PMID 8882748
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Quantification of the average and interindividual variation in pharmacokinetic behavior within the patient population is an important aspect of drug development. Population pharmacokinetic models typically involve large numbers of parameters related nonlinearly to sparse, observational data, which creates difficulties for conventional methods of analysis. The nonlinear mixed-effects method implemented in the computer program NONMEM is a widely used approach to the estimation of population parameters. However, the method relies on somewhat restrictive modeling assumptions to enable efficient parameter estimation. In this paper we describe a Bayesian approach to population pharmacokinetic analysis which used a technique known as Gibbs sampling to simulate values for each model parameter. We provide details of how to implement the method in the context of population pharmacokinetic analysis, and illustrate this via an application to gentamicin population pharmacokinetics in neonates.

Citing Articles

Saddle-Reset for Robust Parameter Estimation and Identifiability Analysis of Nonlinear Mixed Effects Models.

Bjugard Nyberg H, Hooker A, Bauer R, Aoki Y AAPS J. 2020; 22(4):90.

PMID: 32617704 PMC: 7373158. DOI: 10.1208/s12248-020-00471-y.


Complex Bayesian Modeling Workflows Encoding and Execution Made Easy With a Novel WinBUGS Plugin of the Drug Disease Model Resources Interoperability Framework.

Larizza C, Borella E, Pasotti L, Tartaglione P, Smith M, Moodie S CPT Pharmacometrics Syst Pharmacol. 2018; 7(5):298-308.

PMID: 29575824 PMC: 6561612. DOI: 10.1002/psp4.12285.


Use of pathway information in molecular epidemiology.

Thomas D, Conti D, Baurley J, Nijhout F, Reed M, Ulrich C Hum Genomics. 2010; 4(1):21-42.

PMID: 21072972 PMC: 2999471. DOI: 10.1186/1479-7364-4-1-21.


Complex system approaches to genetic analysis Bayesian approaches.

Wilson M, Baurley J, Thomas D, Conti D Adv Genet. 2010; 72:47-71.

PMID: 21029848 PMC: 4190044. DOI: 10.1016/B978-0-12-380862-2.00003-5.


Methods for investigating gene-environment interactions in candidate pathway and genome-wide association studies.

Thomas D Annu Rev Public Health. 2010; 31:21-36.

PMID: 20070199 PMC: 2847610. DOI: 10.1146/annurev.publhealth.012809.103619.


References
1.
White D, Walawander C, Tung Y, Grasela T . An evaluation of point and interval estimates in population pharmacokinetics using NONMEM analysis. J Pharmacokinet Biopharm. 1991; 19(1):87-112. DOI: 10.1007/BF01062194. View

2.
Sheiner L, Beal S . Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm. 1980; 8(6):553-71. DOI: 10.1007/BF01060053. View

3.
Davidian M, Gallant A . Smooth nonparametric maximum likelihood estimation for population pharmacokinetics, with application to quinidine. J Pharmacokinet Biopharm. 1992; 20(5):529-56. DOI: 10.1007/BF01061470. View

4.
Geman S, Geman D . Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell. 2012; 6(6):721-41. DOI: 10.1109/tpami.1984.4767596. View

5.
Maitre P, Buhrer M, Thomson D, Stanski D . A three-step approach combining Bayesian regression and NONMEM population analysis: application to midazolam. J Pharmacokinet Biopharm. 1991; 19(4):377-84. DOI: 10.1007/BF01061662. View