» Articles » PMID: 16284919

Prediction Discrepancies for the Evaluation of Nonlinear Mixed-effects Models

Overview
Publisher Springer
Specialty Pharmacology
Date 2005 Nov 15
PMID 16284919
Citations 53
Authors
Affiliations
Soon will be listed here.
Abstract

Reliable estimation methods for non-linear mixed-effects models are now available and, although these models are increasingly used, only a limited number of statistical developments for their evaluation have been reported. We develop a criterion and a test to evaluate nonlinear mixed-effects models based on the whole predictive distribution. For each observation, we define the prediction discrepancy (pd) as the percentile of the observation in the whole marginal predictive distribution under H(0). We propose to compute prediction discrepancies using Monte Carlo integration which does not require model approximation. If the model is valid, these pd should be uniformly distributed over (0, 1) which can be tested by a Kolmogorov-Smirnov test. In a simulation study based on a standard population pharmacokinetic model, we compare and show the interest of this criterion with respect to the one most frequently used to evaluate nonlinear mixed-effects models: standardized prediction errors (spe) which are evaluated using a first order approximation of the model. Trends in pd can also be evaluated via several plots to check for specific departures from the model.

Citing Articles

Population Pharmacokinetics of Epcoritamab Following Subcutaneous Administration in Relapsed or Refractory B Cell Non-Hodgkin Lymphoma.

Li T, Gibiansky L, Parikh A, van der Linden M, Sanghavi K, Putnins M Clin Pharmacokinet. 2024; 64(1):127-141.

PMID: 39708278 DOI: 10.1007/s40262-024-01464-2.


Continuous infusion of piperacillin/tazobactam optimizes intraoperative antibiotic exposure in patients undergoing elective pelvic exenteration surgery.

Jackson D, Ulldemolins M, Liu X, Harris C, Tognolini A, Wallis S Antimicrob Agents Chemother. 2024; 68(12):e0111624.

PMID: 39480073 PMC: 11619375. DOI: 10.1128/aac.01116-24.


Peri-operative pharmacokinetics of cefazolin prophylaxis during valve replacement surgery.

Alli A, Paruk F, Roger C, Lipman J, Calleemalay D, Wallis S PLoS One. 2023; 18(9):e0291425.

PMID: 37729151 PMC: 10511078. DOI: 10.1371/journal.pone.0291425.


Multivariate Exact Discrepancy: A New Tool for PK/PD Model Evaluation.

Baklouti S, Comets E, Gandia P, Concordet D Clin Pharmacokinet. 2023; 62(11):1599-1609.

PMID: 37717242 PMC: 10581936. DOI: 10.1007/s40262-023-01296-6.


External Evaluation of Population Pharmacokinetic Models for Precision Dosing: Current State and Knowledge Gaps.

El Hassani M, Marsot A Clin Pharmacokinet. 2023; 62(4):533-540.

PMID: 37004650 DOI: 10.1007/s40262-023-01233-7.


References
1.
Mesnil F, Mentre F, Dubruc C, Thenot J, Mallet A . Population pharmacokinetic analysis of mizolastine and validation from sparse data on patients using the nonparametric maximum likelihood method. J Pharmacokinet Biopharm. 1998; 26(2):133-61. DOI: 10.1023/a:1020505722924. View

2.
Yano Y, Beal S, Sheiner L . Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn. 2001; 28(2):171-92. DOI: 10.1023/a:1011555016423. View

3.
Aarons L, Karlsson M, Mentre F, Rombout F, Steimer J, Van Peer A . Role of modelling and simulation in Phase I drug development. Eur J Pharm Sci. 2001; 13(2):115-22. DOI: 10.1016/s0928-0987(01)00096-3. View

4.
Lesko L, Rowland M, Peck C, Blaschke T . Optimizing the science of drug development: opportunities for better candidate selection and accelerated evaluation in humans. J Clin Pharmacol. 2000; 40(8):803-14. DOI: 10.1177/00912700022009530. View

5.
Mentre F, Gomeni R . A two-step iterative algorithm for estimation in nonlinear mixed-effect models with an evaluation in population pharmacokinetics. J Biopharm Stat. 1995; 5(2):141-58. DOI: 10.1080/10543409508835104. View