» Articles » PMID: 8840786

Microbial Pathogenesis in Cystic Fibrosis: Mucoid Pseudomonas Aeruginosa and Burkholderia Cepacia

Overview
Journal Microbiol Rev
Specialty Microbiology
Date 1996 Sep 1
PMID 8840786
Citations 703
Authors
Affiliations
Soon will be listed here.
Abstract

Respiratory infections with Pseudomonas aeruginosa and Burkholderia cepacia play a major role in the pathogenesis of cystic fibrosis (CF). This review summarizes the latest advances in understanding host-pathogen interactions in CF with an emphasis on the role and control of conversion to mucoidy in P. aeruginosa, a phenomenon epitomizing the adaptation of this opportunistic pathogen to the chronic chourse of infection in CF, and on the innate resistance to antibiotics of B. cepacia, person-to-person spread, and sometimes rapidly fatal disease caused by this organism. While understanding the mechanism of conversion to mucoidy in P. aeruginosa has progressed to the point where this phenomenon has evolved into a model system for studying bacterial stress response in microbial pathogenesis, the more recent challenge with B. cepacia, which has emerged as a potent bona fide CF pathogen, is discussed in the context of clinical issues, taxonomy, transmission, and potential modes of pathogenicity.

Citing Articles

Understanding the pathophysiology of colonization as a guide for future treatment for chronic leg ulcers.

Matheus G, Chamoun M, Khosrotehrani K, Sivakumaran Y, Wells T Burns Trauma. 2025; 13():tkae083.

PMID: 39830194 PMC: 11741523. DOI: 10.1093/burnst/tkae083.


Hypermutability bypasses genetic constraints in SCV phenotypic switching in Pseudomonas aeruginosa biofilms.

Tobares R, Martino R, Colque C, Castillo Moro G, Moyano A, Albarracin Orio A NPJ Biofilms Microbiomes. 2025; 11(1):14.

PMID: 39805827 PMC: 11730322. DOI: 10.1038/s41522-024-00644-z.


PEG-PLGA nanoparticles deposited in and .

Tchatchiashvili T, Duering H, Mueller-Boetticher L, Grune C, Fischer D, Pletz M J Pharm Anal. 2025; 14(12):100939.

PMID: 39759775 PMC: 11697766. DOI: 10.1016/j.jpha.2024.01.007.


New tools to monitor infection and biofilms in .

Xue F, Ragno M, Blackburn S, Fasseas M, Maitra S, Liang M Front Cell Infect Microbiol. 2024; 14:1478881.

PMID: 39737329 PMC: 11683784. DOI: 10.3389/fcimb.2024.1478881.


Urinary tract infections and catheter-associated urinary tract infections caused by .

El Husseini N, Carter J, Lee V Microbiol Mol Biol Rev. 2024; 88(4):e0006622.

PMID: 39431861 PMC: 11653733. DOI: 10.1128/mmbr.00066-22.


References
1.
Roychoudhury S, Sakai K, Schlictman D, Chakrabarty A . Signal transduction in exopolysaccharide alginate synthesis: phosphorylation of the response regulator AlgR1 in Pseudomonas aeruginosa and Escherichia coli. Gene. 1992; 112(1):45-51. DOI: 10.1016/0378-1119(92)90301-5. View

2.
Darzins A, Nixon L, Vanags R, Chakrabarty A . Cloning of Escherichia coli and Pseudomonas aeruginosa phosphomannose isomerase genes and their expression in alginate-negative mutants of Pseudomonas aeruginosa. J Bacteriol. 1985; 161(1):249-57. PMC: 214864. DOI: 10.1128/jb.161.1.249-257.1985. View

3.
Pier G, Desjardins D, Aguilar T, Barnard M, Speert D . Polysaccharide surface antigens expressed by nonmucoid isolates of Pseudomonas aeruginosa from cystic fibrosis patients. J Clin Microbiol. 1986; 24(2):189-96. PMC: 268873. DOI: 10.1128/jcm.24.2.189-196.1986. View

4.
Wozniak D, Ohman D . Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J Bacteriol. 1994; 176(19):6007-14. PMC: 196818. DOI: 10.1128/jb.176.19.6007-6014.1994. View

5.
Steinbach S, Sun L, Jiang R, Flume P, Gilligan P, Egan T . Transmissibility of Pseudomonas cepacia infection in clinic patients and lung-transplant recipients with cystic fibrosis. N Engl J Med. 1994; 331(15):981-7. DOI: 10.1056/NEJM199410133311504. View