» Articles » PMID: 39061256

Modification and Synergistic Studies of a Novel Frog Antimicrobial Peptide Against Biofilms

Overview
Specialty Pharmacology
Date 2024 Jul 27
PMID 39061256
Authors
Affiliations
Soon will be listed here.
Abstract

The overuse of traditional antibiotics has resulted in bacterial resistance and seriously compromised the therapeutic efficacy of traditional antibiotics, making the exploration of new antimicrobials particularly important. Several studies have shown that bioactive peptides have become an important source of new antimicrobial drugs due to their broad-spectrum antibacterial action and lack of susceptibility to resistance. In this study, a novel bioactive peptide Nigrosin-6VL was characterised from the skin secretion of the golden cross band frog, , by using the 'shotgun' cloning strategy. Modifications on the Rana Box of Nigrosin-6VL revealed its critical role in antimicrobial functions. The peptide analogue, 2170-2R, designed to preserve the Rana Box structure while enhancing cationicity, exhibited improved therapeutic efficacy, particularly against Gram-negative bacteria, with a therapeutic value of 45.27. Synergistic studies demonstrated that 2170-2R inherits the synergistic antimicrobial activities of the parent peptides and effectively enhances the antimicrobial capacity of cefepime and gentamicin against both planktonic cells and biofilms. Specifically, 2170-2R can synergise effectively with cefepime and gentamicin against different strains of biofilms. Consequently, 2170-2R holds promise as a potent antimicrobial agent developed to combat infections induced by .

Citing Articles

Discovery, development and optimisation of a novel frog antimicrobial peptide with combined mode of action against drug-resistant bacteria.

Wang J, Hu J, Pu W, Chen X, Ma C, Jiang Y Comput Struct Biotechnol J. 2024; 23:3391-3406.

PMID: 39345903 PMC: 11437748. DOI: 10.1016/j.csbj.2024.09.006.

References
1.
Yoshizawa S, Fourmy D, Puglisi J . Structural origins of gentamicin antibiotic action. EMBO J. 1998; 17(22):6437-48. PMC: 1170992. DOI: 10.1093/emboj/17.22.6437. View

2.
Chen G, Miao Y, Ma C, Zhou M, Shi Z, Chen X . Brevinin-2GHk from and the Design of Truncated Analogs Exhibiting the Enhancement of Antimicrobial Activity. Antibiotics (Basel). 2020; 9(2). PMC: 7168151. DOI: 10.3390/antibiotics9020085. View

3.
Durante-Mangoni E, Grammatikos A, Utili R, Falagas M . Do we still need the aminoglycosides?. Int J Antimicrob Agents. 2008; 33(3):201-5. DOI: 10.1016/j.ijantimicag.2008.09.001. View

4.
Yang X, Lee W, Zhang Y . Extremely abundant antimicrobial peptides existed in the skins of nine kinds of Chinese odorous frogs. J Proteome Res. 2011; 11(1):306-19. DOI: 10.1021/pr200782u. View

5.
Dehsorkhi A, Castelletto V, Hamley I . Self-assembling amphiphilic peptides. J Pept Sci. 2014; 20(7):453-67. PMC: 4237179. DOI: 10.1002/psc.2633. View