Guo D, Shen Y, Zhu M, Zhan Y, Wang X, Xia J
Int J Ophthalmol. 2022; 15(7):1116-1121.
PMID: 35919330
PMC: 9318093.
DOI: 10.18240/ijo.2022.07.11.
Morales C, Gohel S, Scheiman M, Li X, Santos E, Sangoi A
J Vis. 2020; 20(8):17.
PMID: 32797193
PMC: 7438664.
DOI: 10.1167/jov.20.8.17.
Ward L, Gaertner C, Olivier L, Ajrezo L, Kapoula Z
EClinicalMedicine. 2020; 21:100323.
PMID: 32322809
PMC: 7170956.
DOI: 10.1016/j.eclinm.2020.100323.
Carracedo G, Carpena-Torres C, Batres L, Serramito M, Gonzalez-Bergaz A
J Ophthalmol. 2020; 2020:8580471.
PMID: 31976087
PMC: 6961603.
DOI: 10.1155/2020/8580471.
Demer J, Clark R
J Neurophysiol. 2019; 122(1):105-117.
PMID: 31042451
PMC: 6689778.
DOI: 10.1152/jn.00152.2019.
Functional anatomy of human extraocular muscles during fusional divergence.
Demer J, Clark R
J Neurophysiol. 2018; 120(5):2571-2582.
PMID: 30230991
PMC: 6295544.
DOI: 10.1152/jn.00485.2018.
Three-dimensional binocular eye-hand coordination in normal vision and with simulated visual impairment.
Maiello G, Kwon M, Bex P
Exp Brain Res. 2018; 236(3):691-709.
PMID: 29299642
PMC: 6693328.
DOI: 10.1007/s00221-017-5160-8.
Adaptation of horizontal eye alignment in the presence of prism in young children.
Wu Y, Sreenivasan V, Babinsky E, Candy T
J Vis. 2016; 16(10):6.
PMID: 27548084
PMC: 5833321.
DOI: 10.1167/16.10.6.
Dynamics of the near response under natural viewing conditions with an open-view sensor.
Chirre E, Prieto P, Artal P
Biomed Opt Express. 2015; 6(10):4200-11.
PMID: 26504666
PMC: 4605075.
DOI: 10.1364/BOE.6.004200.
A Case Report of Nystagmus with Acute Comitant Esotropia Secondary to Heroin Withdrawal: A Novel Presentation.
Rabin R
Case Rep Ophthalmol. 2015; 6(3):333-8.
PMID: 26483678
PMC: 4608628.
DOI: 10.1159/000440763.
Disparity-driven vs blur-driven models of accommodation and convergence in binocular vision and intermittent strabismus.
Horwood A, Riddell P
J AAPOS. 2014; 18(6):576-83.
PMID: 25498466
PMC: 4270963.
DOI: 10.1016/j.jaapos.2014.08.009.
Clinical test responses to different orthoptic exercise regimes in typical young adults.
Horwood A, Toor S
Ophthalmic Physiol Opt. 2014; 34(2):250-62.
PMID: 24471739
PMC: 4238796.
DOI: 10.1111/opo.12109.
Developmental changes in the balance of disparity, blur, and looming/proximity cues to drive ocular alignment and focus.
Horwood A, Riddell P
Perception. 2013; 42(7):693-715.
PMID: 24344547
PMC: 4533891.
DOI: 10.1068/p7506.
The clinical near gradient stimulus AC/A ratio correlates better with the response CA/C ratio than with the response AC/A ratio.
Horwood A, Riddell P
Strabismus. 2013; 21(2):140-4.
PMID: 23713939
PMC: 4533877.
DOI: 10.3109/09273972.2013.786741.
The effect of lens-induced anisometropia on accommodation and vergence during human visual development.
Bharadwaj S, Candy T
Invest Ophthalmol Vis Sci. 2011; 52(6):3595-603.
PMID: 21296822
PMC: 3109043.
DOI: 10.1167/iovs.10-6214.
Receding and disparity cues aid relaxation of accommodation.
Horwood A, Riddell P
Optom Vis Sci. 2009; 86(11):1276-86.
PMID: 19770814
PMC: 4548718.
DOI: 10.1097/OPX.0b013e3181bb41de.
Human vergence eye movements to oblique disparity stimuli: evidence for an anisotropy favoring horizontal disparities.
Rambold H, Miles F
Vision Res. 2008; 48(19):2006-19.
PMID: 18675438
PMC: 2562683.
DOI: 10.1016/j.visres.2008.05.009.
The use of cues to convergence and accommodation in naïve, uninstructed participants.
Horwood A, Riddell P
Vision Res. 2008; 48(15):1613-24.
PMID: 18538815
PMC: 4533892.
DOI: 10.1016/j.visres.2008.04.023.
Human vergence eye movements initiated by competing disparities: evidence for a winner-take-all mechanism.
Sheliga B, FitzGibbon E, Miles F
Vision Res. 2006; 47(4):479-500.
PMID: 17118422
PMC: 2170857.
DOI: 10.1016/j.visres.2006.09.027.
Short-latency disparity vergence eye movements: a response to disparity energy.
Sheliga B, FitzGibbon E, Miles F
Vision Res. 2006; 46(21):3723-40.
PMID: 16765403
PMC: 2440632.
DOI: 10.1016/j.visres.2006.04.020.