» Articles » PMID: 8773573

In Situ Detection of Individual Transplanted Bone Marrow Cells Using FISH on Sections of Paraffin-embedded Whole Murine Femurs

Overview
Publisher Sage Publications
Specialty Biochemistry
Date 1996 Sep 1
PMID 8773573
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Studies of transplantation biology rely on the detection of donor hemopoietic cells in transplant recipients. Traditionally this has been achieved through ex vivo techniques, including flow cytometric analysis of cell surface markers to detect cells expressing specific epitopes, histochemical detection of cytoplasmic proteins, and the detection of Y chromosome-specific sequences by DNA hybridization. Studies using congenic models, such as the Ly5.1/5.2 mouse, or the utilization of fluorescent dyes, such as PKH-26, have allowed more in-depth analysis of transplantation, beginning to address key issues such as cell homing through cell tracking and elucidation of the "stem cell niche." However, these methods are limited by labeling sensitivity, specificity, crossreactivity and, in the case of PKH-26 labeling, the number of cell divisions the transplanted cells can make before the signal disappears. We have developed a fluorescent in situ hybridization (FISH) technique that utilizes a murine Y chromosome-specific "painting" probe to identify in situ individual transplanted male cells in paraffin-embedded sections of female whole bone marrow while maintaining good morphological integrity. This method is highly sensitive and specific, labeling more than 99% of male cells and no female cells, allowing each transplant to be assessed at the individual cell level. The technique provides unique opportunities to follow the path taken by transplanted cells, both during homing into the marrow and through their maturation and differentiation into mature, functional hemopoietic cells.

Citing Articles

The Bone Regeneration Using Bone Marrow Stromal Cells with Moderate Concentration Platelet-Rich Plasma in Femoral Segmental Defect of Rats.

Yamakawa J, Hashimoto J, Takano M, Takagi M Open Orthop J. 2017; 11:1-11.

PMID: 28217215 PMC: 5301304. DOI: 10.2174/1874325001711010001.


Bone Fracture Healing with Umbilico-Placental Mononuclear Cells: A Controlled Animal Study.

Polat O, Polat G, Karahuseyinoglu S, Kutlay N, Tasci A, Erdemli E Eur J Trauma Emerg Surg. 2016; 36(1):60-6.

PMID: 26815570 DOI: 10.1007/s00068-009-9038-8.


Fluorescent In Situ hybridization: a new tool for the direct identification and detection of F. psychrophilum.

Strepparava N, Wahli T, Segner H, Polli B, Petrini O PLoS One. 2012; 7(11):e49280.

PMID: 23152887 PMC: 3494677. DOI: 10.1371/journal.pone.0049280.


Determination of the fate and contribution of ex vivo expanded human bone marrow stem and progenitor cells for bone formation by 2.3ColGFP.

Yin D, Wang Z, Gao Q, Sundaresan R, Parrish C, Yang Q Mol Ther. 2009; 17(11):1967-78.

PMID: 19603005 PMC: 2835035. DOI: 10.1038/mt.2009.151.


Murine allogeneic in vivo stem cell homing(,).

Colvin G, Lambert J, Dooner M, cerny J, Quesenberry P J Cell Physiol. 2006; 211(2):386-91.

PMID: 17167771 PMC: 1986762. DOI: 10.1002/jcp.20945.