» Articles » PMID: 8752323

The C Terminus of the AddA Subunit of the Bacillus Subtilis ATP-dependent DNase is Required for the ATP-dependent Exonuclease Activity but Not for the Helicase Activity

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1996 Sep 1
PMID 8752323
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Comparison of subunit AddA of the Bacillus subtilis AddAB enzyme, subunit RecB of the Escherichia coli RecBCD enzyme, and subunit RecB of the Haemophilus influenzae RecBCD enzyme revealed several regions of homology. Whereas the first seven regions are common among helicases, the two C-terminally located regions are unique for RecB of E. coli and H. influenzae and AddA. Deletion of the C-terminal region resulted in the production of an enzyme which showed moderately impaired levels of ATP-dependent helicase activity, whereas the ATP-dependent exonuclease activity was completely destroyed. The mutant enzyme was almost completely capable of complementing E. coli recBCD and B. subtilis addAB strains with respect to DNA repair and homologous recombination. These results strongly suggest that at least part of the C-terminal region of the AddA protein is indispensable for exonuclease activity and that, in contrast to the exonuclease activity, the helicase activity of the addAB gene product is important for DNA repair and homologous recombination.

Citing Articles

RecBCD enzyme: mechanistic insights from mutants of a complex helicase-nuclease.

Amundsen S, Smith G Microbiol Mol Biol Rev. 2023; 87(4):e0004123.

PMID: 38047637 PMC: 10732027. DOI: 10.1128/mmbr.00041-23.


The adnAB locus, encoding a putative helicase-nuclease activity, is essential in Streptomyces.

Zhang L, Nguyen H, Chipot L, Piotrowski E, Bertrand C, Thibessard A J Bacteriol. 2014; 196(14):2701-8.

PMID: 24837284 PMC: 4097579. DOI: 10.1128/JB.01513-14.


DNA repair and genome maintenance in Bacillus subtilis.

Lenhart J, Schroeder J, Walsh B, Simmons L Microbiol Mol Biol Rev. 2012; 76(3):530-64.

PMID: 22933559 PMC: 3429619. DOI: 10.1128/MMBR.05020-11.


Bacillus subtilis genome editing using ssDNA with short homology regions.

Wang Y, Weng J, Waseem R, Yin X, Zhang R, Shen Q Nucleic Acids Res. 2012; 40(12):e91.

PMID: 22422839 PMC: 3384351. DOI: 10.1093/nar/gks248.


Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways.

Gupta R, Barkan D, Redelman-Sidi G, Shuman S, Glickman M Mol Microbiol. 2011; 79(2):316-30.

PMID: 21219454 PMC: 3812669. DOI: 10.1111/j.1365-2958.2010.07463.x.


References
1.
Finch P, Emmerson P . The nucleotide sequence of the uvrD gene of E. coli. Nucleic Acids Res. 1984; 12(14):5789-99. PMC: 320031. DOI: 10.1093/nar/12.14.5789. View

2.
Mulder J, Venema G . Isolation and partial characterization of Bacillus subtilis mutants impaired in DNA entry. J Bacteriol. 1982; 150(1):260-8. PMC: 220108. DOI: 10.1128/jb.150.1.260-268.1982. View

3.
Haijema B, Hamoen L, Kooistra J, Venema G, van Sinderen D . Expression of the ATP-dependent deoxyribonuclease of Bacillus subtilis is under competence-mediated control. Mol Microbiol. 1995; 15(2):203-11. DOI: 10.1111/j.1365-2958.1995.tb02235.x. View

4.
Biswal N, KLEINSCHMIDT A, Spatz H, Trautner T . Physical properties of the DNA of bacteriophage SP50. Mol Gen Genet. 1967; 100(1):39-55. DOI: 10.1007/BF00425774. View

5.
Kooistra J, Venema G . Cloning, sequencing, and expression of Bacillus subtilis genes involved in ATP-dependent nuclease synthesis. J Bacteriol. 1991; 173(12):3644-55. PMC: 207991. DOI: 10.1128/jb.173.12.3644-3655.1991. View