» Articles » PMID: 8722819

Removal of Lipid Artifacts in 1H Spectroscopic Imaging by Data Extrapolation

Overview
Journal Magn Reson Med
Publisher Wiley
Specialty Radiology
Date 1996 May 1
PMID 8722819
Citations 55
Authors
Affiliations
Soon will be listed here.
Abstract

Proton MR spectroscopic imaging (MRSI) of human cerebral cortex is complicated by the presence of an intense signal from subcutaneous lipids, which, if not suppressed before Fourier reconstruction, causes ringing and signal contamination throughout the metabolite images as a result of limited k-space sampling. In this article, an improved reconstruction of the lipid region is obtained using the Papoulis-Gerchberg algorithm. This procedure makes use of the narrow-band-limited nature of the subcutaneous lipid signal to extrapolate to higher k-space values without alteration of the metabolite signal region. Using computer simulations and in vivo experimental studies, the implementation and performance of this algorithm were examined. This method was found to permit MRSI brain spectra to be obtained without applying any lipid suppression during data acquisition, at echo times of 50 ms and longer. When applied together with optimized acquisition methods, this provides an effective procedure for imaging metabolite distributions in cerebral cortical surface regions.

Citing Articles

Rosette Spectroscopic Imaging for Whole-Brain Slab Metabolite Mapping at 7T: Acceleration Potential and Reproducibility.

Huang Z, Emir U, Doring A, Klauser A, Xiao Y, Widmaier M Hum Brain Mapp. 2025; 46(4):e70176.

PMID: 40056040 PMC: 11889463. DOI: 10.1002/hbm.70176.


Lipid removal in deuterium metabolic imaging (DMI) using spatial prior knowledge.

de Graaf R, Liu Y, Corbin Z, De Feyter H Magn Reson (Gott). 2025; 5(1):21-31.

PMID: 39980872 PMC: 11836565. DOI: 10.5194/mr-5-21-2024.


WALINET: A water and lipid identification convolutional neural network for nuisance signal removal in MR spectroscopic imaging.

Weiser P, Langs G, Motyka S, Bogner W, Courvoisier S, Hoffmann M Magn Reson Med. 2024; 93(4):1430-1442.

PMID: 39737778 PMC: 11782715. DOI: 10.1002/mrm.30402.


Mapping early tumor response to radiotherapy using diffusion kurtosis imaging*.

Goryawala M, Mellon E, Shim H, Maudsley A Neuroradiol J. 2022; 36(2):198-205.

PMID: 36000488 PMC: 10034702. DOI: 10.1177/19714009221122204.


Proton metabolic mapping of the brain at 7 T using a two-dimensional free induction decay-echo-planar spectroscopic imaging readout with lipid suppression.

Nam K, Hendriks A, Boer V, Klomp D, Wijnen J, Bhogal A NMR Biomed. 2022; 35(10):e4771.

PMID: 35577344 PMC: 9541868. DOI: 10.1002/nbm.4771.


References
1.
Haase A, Frahm J, Hanicke W, Matthaei D . 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol. 1985; 30(4):341-4. DOI: 10.1088/0031-9155/30/4/008. View

2.
Hu X, Patel M, Ugurbil K . A new strategy for spectroscopic imaging. J Magn Reson B. 1994; 103(1):30-8. DOI: 10.1006/jmrb.1994.1004. View

3.
Duijn J, Matson G, Maudsley A, Weiner M . 3D phase encoding 1H spectroscopic imaging of human brain. Magn Reson Imaging. 1992; 10(2):315-9. DOI: 10.1016/0730-725x(92)90490-q. View

4.
Constable R, Henkelman R . Data extrapolation for truncation artifact removal. Magn Reson Med. 1991; 17(1):108-18. DOI: 10.1002/mrm.1910170115. View

5.
de Beer R, van den Boogaart A, van Ormondt D, Pijnappel W, den Hollander J, Marien A . Application of time-domain fitting in the quantification of in vivo 1H spectroscopic imaging data sets. NMR Biomed. 1992; 5(4):171-8. DOI: 10.1002/nbm.1940050403. View