» Articles » PMID: 8567723

Increased Expression of TGF-beta 2 in Osteoblasts Results in an Osteoporosis-like Phenotype

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 1996 Jan 1
PMID 8567723
Citations 113
Authors
Affiliations
Soon will be listed here.
Abstract

The development of the skeleton requires the coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts. The activities of these two cell types are likely to be regulated by TGF-beta, which is abundant in bone matrix. We have used transgenic mice to evaluate the role of TGF-beta 2 in bone development and turnover. Osteoblast-specific overexpression of TGF-beta 2 from the osteocalcin promoter resulted in progressive bone loss associated with increases in osteoblastic matrix deposition and osteoclastic bone resorption. This phenotype closely resembles the bone abnormalities seen in human hyperparathyroidism and osteoporosis. Furthermore, a high level of TGF-beta 2 overexpression resulted in defective bone mineralization and severe hypoplasia of the clavicles, a hallmark of the developmental disease cleidocranial dysplasia. Our results suggest that TGF-beta 2 functions as a local positive regulator of bone remodeling and that alterations in TGF-beta 2 synthesis by bone cells, or in their responsiveness to TGF-beta 2, may contribute to the pathogenesis of metabolic bone disease.

Citing Articles

Loss of STAT3 in osteoblasts has detrimental and sexually dimorphic effects on skeletal development.

Davidson R, Corry K, Orlofsky A, Li P, Russell C, Zhang A PLoS One. 2024; 19(12):e0315078.

PMID: 39689092 PMC: 11651548. DOI: 10.1371/journal.pone.0315078.


Differential Gene Expression Involved in Bone Turnover of Mice Expressing Constitutively Active TGFβ Receptor Type I.

Myint O, Sakunrangsit N, Pholtaisong J, Toejing P, Pho-On P, Leelahavanichkul A Int J Mol Sci. 2024; 25(11).

PMID: 38892016 PMC: 11173332. DOI: 10.3390/ijms25115829.


Intersections of Fibrodysplasia Ossificans Progressiva and Traumatic Heterotopic Ossification.

Juan C, Bancroft A, Choi J, Nunez J, Pagani C, Lin Y Biomolecules. 2024; 14(3).

PMID: 38540768 PMC: 10968060. DOI: 10.3390/biom14030349.


TGF-β signaling in health, disease, and therapeutics.

Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C Signal Transduct Target Ther. 2024; 9(1):61.

PMID: 38514615 PMC: 10958066. DOI: 10.1038/s41392-024-01764-w.


Loss of the auxiliary αδ voltage-sensitive calcium channel subunit impairs bone formation and anabolic responses to mechanical loading.

Kelly M, Sharma K, Wright C, Yi X, Reyes Fernandez P, Gegg A JBMR Plus. 2024; 8(2):ziad008.

PMID: 38505532 PMC: 10945727. DOI: 10.1093/jbmrpl/ziad008.


References
1.
Pfeilschifter J, Mundy G . Modulation of type beta transforming growth factor activity in bone cultures by osteotropic hormones. Proc Natl Acad Sci U S A. 1987; 84(7):2024-8. PMC: 304576. DOI: 10.1073/pnas.84.7.2024. View

2.
Finkelman R, Bell N, Strong D, Demers L, Baylink D . Ovariectomy selectively reduces the concentration of transforming growth factor beta in rat bone: implications for estrogen deficiency-associated bone loss. Proc Natl Acad Sci U S A. 1992; 89(24):12190-3. PMC: 50724. DOI: 10.1073/pnas.89.24.12190. View

3.
Robey P, Young M, Flanders K, Roche N, Kondaiah P, Reddi A . Osteoblasts synthesize and respond to transforming growth factor-type beta (TGF-beta) in vitro. J Cell Biol. 1987; 105(1):457-63. PMC: 2114927. DOI: 10.1083/jcb.105.1.457. View

4.
OConnor-McCourt M, Wakefield L . Latent transforming growth factor-beta in serum. A specific complex with alpha 2-macroglobulin. J Biol Chem. 1987; 262(29):14090-9. View

5.
Huang S, OGrady P, Huang J . Human transforming growth factor beta.alpha 2-macroglobulin complex is a latent form of transforming growth factor beta. J Biol Chem. 1988; 263(3):1535-41. View