Egorov V, Kim P, Kharazov A, Dzigasov S, Popov P, Rykova S
Cancers (Basel). 2022; 14(5).
PMID: 35267562
PMC: 8909059.
DOI: 10.3390/cancers14051254.
Essay M, Maina J
Open Biol. 2020; 10(7):190249.
PMID: 32634372
PMC: 7574555.
DOI: 10.1098/rsob.190249.
Zhuo Y, Wu J, Kuang L, Qu Y, Zee B, Lee J
Evid Based Complement Alternat Med. 2020; 2020:6051831.
PMID: 32308711
PMC: 7136789.
DOI: 10.1155/2020/6051831.
Seymour R, Hu Q, Snelling E
J Anat. 2019; 236(3):522-530.
PMID: 31710396
PMC: 7018638.
DOI: 10.1111/joa.13119.
Lindsey S, Butcher J, Vignon-Clementel I
Development. 2018; 145(20).
PMID: 30333235
PMC: 6215402.
DOI: 10.1242/dev.162578.
Optimal Branching Structure of Fluidic Networks with Permeable Walls.
Pepe V, Rocha L, Miguel A
Biomed Res Int. 2017; 2017:5284816.
PMID: 28607933
PMC: 5457780.
DOI: 10.1155/2017/5284816.
The cerebral basal arterial network: morphometry of inflow and outflow components.
Burlakoti A, Kumaratilake J, Taylor J, Massy-Westropp N, Henneberg M
J Anat. 2017; 230(6):833-841.
PMID: 28370065
PMC: 5442140.
DOI: 10.1111/joa.12604.
Mechanoresponsive materials for drug delivery: Harnessing forces for controlled release.
Wang J, Kaplan J, Colson Y, Grinstaff M
Adv Drug Deliv Rev. 2016; 108:68-82.
PMID: 27856307
PMC: 5285479.
DOI: 10.1016/j.addr.2016.11.001.
A generalized optimization principle for asymmetric branching in fluidic networks.
Stephenson D, Lockerby D
Proc Math Phys Eng Sci. 2016; 472(2191):20160451.
PMID: 27493583
PMC: 4971259.
DOI: 10.1098/rspa.2016.0451.
Impact of coronary bifurcation morphology on wave propagation.
Rivolo S, Hadjilucas L, Sinclair M, Horssen P, van den Wijngaard J, Wesolowski R
Am J Physiol Heart Circ Physiol. 2016; 311(4):H855-H870.
PMID: 27402665
PMC: 5114464.
DOI: 10.1152/ajpheart.00130.2016.
Optimality, Cost Minimization and the Design of Arterial Networks.
Hughes A
Artery Res. 2016; 10:1-10.
PMID: 27307796
PMC: 4905520.
DOI: 10.1016/j.artres.2015.01.001.
The role of endothelial mechanosensitive genes in atherosclerosis and omics approaches.
Simmons R, Kumar S, Jo H
Arch Biochem Biophys. 2015; 591:111-31.
PMID: 26686737
PMC: 4747676.
DOI: 10.1016/j.abb.2015.11.005.
Murray's Law in elastin haploinsufficient (Eln+/-) and wild-type (WT) mice.
Sather B, Hageman D, Wagenseil J
J Biomech Eng. 2013; 134(12):124504.
PMID: 23363211
PMC: 3644989.
DOI: 10.1115/1.4023093.
Constrained Mixture Models as Tools for Testing Competing Hypotheses in Arterial Biomechanics: A Brief Survey.
Valentin A, Holzapfel G
Mech Res Commun. 2012; 42:126-133.
PMID: 22711947
PMC: 3375707.
DOI: 10.1016/j.mechrescom.2012.02.003.
Does the principle of minimum work apply at the carotid bifurcation: a retrospective cohort study.
Beare R, Das G, Ren M, Chong W, Sinnott M, Hilton J
BMC Med Imaging. 2011; 11:17.
PMID: 21861925
PMC: 3178471.
DOI: 10.1186/1471-2342-11-17.
Physics and the canalization of morphogenesis: a grand challenge in organismal biology.
von Dassow M, Davidson L
Phys Biol. 2011; 8(4):045002.
PMID: 21750364
PMC: 3200556.
DOI: 10.1088/1478-3975/8/4/045002.
Sensitivity of CFD based hemodynamic results in rabbit aneurysm models to idealizations in surrounding vasculature.
Zeng Z, Kallmes D, Durka M, Ding Y, Lewis D, Kadirvel R
J Biomech Eng. 2010; 132(9):091009.
PMID: 20815643
PMC: 2936725.
DOI: 10.1115/1.4001311.
Impact of inactivity and exercise on the vasculature in humans.
Thijssen D, Maiorana A, ODriscoll G, Cable N, Hopman M, Green D
Eur J Appl Physiol. 2009; 108(5):845-75.
PMID: 19943061
PMC: 2829129.
DOI: 10.1007/s00421-009-1260-x.
Parameter sensitivity study of a constrained mixture model of arterial growth and remodeling.
Valentin A, Humphrey J
J Biomech Eng. 2009; 131(10):101006.
PMID: 19831476
PMC: 2771558.
DOI: 10.1115/1.3192144.
Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling.
Valentin A, Humphrey J
Philos Trans A Math Phys Eng Sci. 2009; 367(1902):3585-606.
PMID: 19657012
PMC: 2865879.
DOI: 10.1098/rsta.2009.0113.