» Articles » PMID: 8529273

Carbon Catabolite Regulation of Transcription of Nuclear Genes Coding for Mitochondrial Proteins in the Yeast Kluyveromyces Lactis

Overview
Journal Curr Genet
Specialty Genetics
Date 1995 Aug 1
PMID 8529273
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Promoter regions of the KlQCR7, KlQCR8 and KlCYC1 genes, coding for subunits of the bc1-complex and cytochrome c respectively, in the short-term Crabtree-negative yeast Kluyveromyces lactis differ markedly in sequence from their Saccharomyces cerevisiae counterparts. They have, however, conserved very similar configurations of binding-site motifs for various transcription factors known to be involved in global and carbon-source regulation in S. cerevisiae. To investigate the carbon source-dependent expression of these genes in K. lactis, we have carried out medium-shift experiments and determined transcript levels during the shifts. In sharp contrast to the situation in S. cerevisiae, the level of expression in K. lactis is not affected when glucose is added to a non-fermentable carbon-source medium. However, the genes are not constitutively expressed, but become significantly induced when the cells are shifted from glucose to a non-fermentable carbon source. Finally, induction of transcriptional activation does not occur in media containing both glucose and non-fermentable carbon sources.

Citing Articles

Proteomic and functional consequences of hexokinase deficiency in glucose-repressible Kluyveromyces lactis.

Mates N, Kettner K, Heidenreich F, Pursche T, Migotti R, Kahlert G Mol Cell Proteomics. 2014; 13(3):860-75.

PMID: 24434903 PMC: 3945914. DOI: 10.1074/mcp.M113.032714.


Identifying cis-regulatory changes involved in the evolution of aerobic fermentation in yeasts.

Lin Z, Wang T, Tsai B, Wu F, Yu F, Tseng Y Genome Biol Evol. 2013; 5(6):1065-78.

PMID: 23650209 PMC: 3698916. DOI: 10.1093/gbe/evt067.


Protective vaccination against infectious bursal disease virus with whole recombinant Kluyveromyces lactis yeast expressing the viral VP2 subunit.

Arnold M, Durairaj V, Mundt E, Schulze K, Breunig K, Behrens S PLoS One. 2012; 7(9):e42870.

PMID: 23024743 PMC: 3443089. DOI: 10.1371/journal.pone.0042870.


A novel, lactase-based selection and strain improvement strategy for recombinant protein expression in Kluyveromyces lactis.

Krijger J, Baumann J, Wagner M, Schulze K, Reinsch C, Klose T Microb Cell Fact. 2012; 11:112.

PMID: 22905717 PMC: 3520740. DOI: 10.1186/1475-2859-11-112.


Regulation of phosphatidylglycerolphosphate synthase in aerobic yeast Kluyveromyces lactis.

Ticha E, Polakovicova V, Obernauerova M Folia Microbiol (Praha). 2008; 53(4):319-24.

PMID: 18759116 DOI: 10.1007/s12223-008-0050-x.


References
1.
Forsburg S, Guarente L . Communication between mitochondria and the nucleus in regulation of cytochrome genes in the yeast Saccharomyces cerevisiae. Annu Rev Cell Biol. 1989; 5:153-80. DOI: 10.1146/annurev.cb.05.110189.001101. View

2.
Trumbly R . Glucose repression in the yeast Saccharomyces cerevisiae. Mol Microbiol. 1992; 6(1):15-21. DOI: 10.1111/j.1365-2958.1992.tb00832.x. View

3.
Deshler J, Larson G, Rossi J . Kluyveromyces lactis maintains Saccharomyces cerevisiae intron-encoded splicing signals. Mol Cell Biol. 1989; 9(5):2208-13. PMC: 363015. DOI: 10.1128/mcb.9.5.2208-2213.1989. View

4.
RACKER E, Spector M . Warburg effect revisited: merger of biochemistry and molecular biology. Science. 1981; 213(4505):303-7. DOI: 10.1126/science.6264596. View

5.
Lombardo A, Cereghino G, Scheffler I . Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae. Mol Cell Biol. 1992; 12(7):2941-8. PMC: 364507. DOI: 10.1128/mcb.12.7.2941-2948.1992. View