» Articles » PMID: 8521808

Influenza Hemagglutinin Assumes a Tilted Conformation During Membrane Fusion As Determined by Attenuated Total Reflection FTIR Spectroscopy

Overview
Journal EMBO J
Date 1995 Nov 15
PMID 8521808
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Fusion of influenza virus with target membranes is mediated by an acid-induced conformational change of the viral fusion protein hemagglutinin (HA) involving an extensive reorganization of the alpha-helices. A 'spring-loaded' displacement over at least 100 A provides a mechanism for the insertion of the fusion peptide into the target membrane, but does not explain how the two membranes are brought into fusion contact. Here we examine, by attenuated total reflection Fourier transform infrared spectroscopy, the secondary structure and orientation of HA reconstituted in planar membranes. At neutral pH, the orientation of the HA trimers in planar membranes is approximately perpendicular to the membrane. However, at the pH of fusion, the HA trimers are tilted 55-70 degrees from the membrane normal in the presence or absence of bound target membranes. In the absence of target membranes, the overall secondary structure of HA at the fusion pH is similar to that at neutral pH, but approximately 50-60 additional residues become alpha-helical upon the conformational change in the presence of bound target membranes. These results are discussed in terms of a structural model for the fusion intermediate of influenza HA.

Citing Articles

Molecular Mechanisms behind Conformational Transitions of the Influenza Virus Hemagglutinin Membrane Anchor.

Michalski M, Setny P J Phys Chem B. 2023; 127(44):9450-9460.

PMID: 37877534 PMC: 10641832. DOI: 10.1021/acs.jpcb.3c05257.


Initiation and evolution of pores formed by influenza fusion peptides probed by lysolipid inclusion.

Rice A, Zimmerberg J, Pastor R Biophys J. 2022; 122(6):1018-1032.

PMID: 36575795 PMC: 10111278. DOI: 10.1016/j.bpj.2022.12.029.


Single Virion Tracking Microscopy for the Study of Virus Entry Processes in Live Cells and Biomimetic Platforms.

Nathan L, Daniel S Adv Exp Med Biol. 2019; 1215:13-43.

PMID: 31317494 PMC: 7122913. DOI: 10.1007/978-3-030-14741-9_2.


Direct Visualization of the Conformational Dynamics of Single Influenza Hemagglutinin Trimers.

Das D, Govindan R, Nikic-Spiegel I, Krammer F, Lemke E, Munro J Cell. 2018; 174(4):926-937.e12.

PMID: 29961575 PMC: 6086748. DOI: 10.1016/j.cell.2018.05.050.


Membrane orientation of Gα(i)β(1)γ(2) and Gβ(1)γ(2) determined via combined vibrational spectroscopic studies.

Yang P, Boughton A, Homan K, Tesmer J, Chen Z J Am Chem Soc. 2013; 135(13):5044-51.

PMID: 23461393 PMC: 3731408. DOI: 10.1021/ja3116026.


References
1.
Krimm S, Bandekar J . Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem. 1986; 38:181-364. DOI: 10.1016/s0065-3233(08)60528-8. View

2.
Surewicz W, Mantsch H, Chapman D . Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 1993; 32(2):389-94. DOI: 10.1021/bi00053a001. View

3.
Wharton S, Ruigrok R, Martin S, Skehel J, Bayley P, WEIS W . Conformational aspects of the acid-induced fusion mechanism of influenza virus hemagglutinin. Circular dichroism and fluorescence studies. J Biol Chem. 1988; 263(9):4474-80. View

4.
Wilson I, Skehel J, Wiley D . Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature. 1981; 289(5796):366-73. DOI: 10.1038/289366a0. View

5.
Skehel J, Bayley P, Brown E, Martin S, Waterfield M, White J . Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc Natl Acad Sci U S A. 1982; 79(4):968-72. PMC: 345880. DOI: 10.1073/pnas.79.4.968. View