» Articles » PMID: 15366419

The Energetics of Membrane Fusion from Binding, Through Hemifusion, Pore Formation, and Pore Enlargement

Overview
Journal J Membr Biol
Date 2004 Sep 16
PMID 15366419
Citations 148
Authors
Affiliations
Soon will be listed here.
Abstract

The main steps of viral membrane fusion are local membrane approach, hemifusion, pore formation, and pore enlargement. Experiments and theoretical analyses have helped determine the relative energies required for each step. Key protein structures and conformational changes of the fusion process have been identified. The physical deformations of monolayer bending and lipid tilt have been applied to the steps of membrane fusion. Experiment and theory converge to strongly indicate that, contrary to former conceptions, the fusion process is progressively more energetically difficult: hemifusion has a relatively low energy barrier, pore formation is more energy-consuming, and pore enlargement is the most difficult to achieve.

Citing Articles

SARS-CoV-2 FP1 Destabilizes Lipid Membranes and Facilitates Pore Formation.

Sumarokova M, Pavlov R, Lavushchenko T, Vasilenko E, Kozhemyakin G, Fedorov O Int J Mol Sci. 2025; 26(2).

PMID: 39859399 PMC: 11765642. DOI: 10.3390/ijms26020686.


Boosting Lipofection Efficiency Through Enhanced Membrane Fusion Mechanisms.

Pavlov R, Akimov S, Dashinimaev E, Bashkirov P Int J Mol Sci. 2025; 25(24.

PMID: 39769303 PMC: 11677079. DOI: 10.3390/ijms252413540.


Exploring the influence of anionic lipids in the host cell membrane on viral fusion.

Birtles D, Lee J Biochem Soc Trans. 2024; 52(6):2593-2602.

PMID: 39700018 PMC: 11668307. DOI: 10.1042/BST20240833.


Transient pores in hemifusion diaphragms.

Spencer R, Smirnova Y, Soleimani A, Muller M Biophys J. 2024; 123(16):2455-2475.

PMID: 38867448 PMC: 11365115. DOI: 10.1016/j.bpj.2024.06.009.


Molecular mechanism underlying SNARE-mediated membrane fusion enlightened by all-atom molecular dynamics simulations.

Rizo J, Sari L, Jaczynska K, Rosenmund C, Lin M Proc Natl Acad Sci U S A. 2024; 121(16):e2321447121.

PMID: 38593076 PMC: 11032479. DOI: 10.1073/pnas.2321447121.


References
1.
Melikyan G, Markosyan R, Hemmati H, Delmedico M, Lambert D, Cohen F . Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J Cell Biol. 2000; 151(2):413-23. PMC: 2192659. DOI: 10.1083/jcb.151.2.413. View

2.
Zimmerberg J, Blumenthal R, Sarkar D, Curran M, Morris S . Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion. J Cell Biol. 1994; 127(6 Pt 2):1885-94. PMC: 2120276. DOI: 10.1083/jcb.127.6.1885. View

3.
Zavorotinskaya T, Qian Z, Franks J, Albritton L . A point mutation in the binding subunit of a retroviral envelope protein arrests virus entry at hemifusion. J Virol. 2003; 78(1):473-81. PMC: 303374. DOI: 10.1128/jvi.78.1.473-481.2004. View

4.
Chizmadzhev Y, Kuzmin P, Kumenko D, Zimmerberg J, Cohen F . Dynamics of fusion pores connecting membranes of different tensions. Biophys J. 2000; 78(5):2241-56. PMC: 1300816. DOI: 10.1016/S0006-3495(00)76771-3. View

5.
Mittal A, Leikina E, Chernomordik L, Bentz J . Kinetically differentiating influenza hemagglutinin fusion and hemifusion machines. Biophys J. 2003; 85(3):1713-24. PMC: 1303345. DOI: 10.1016/S0006-3495(03)74601-3. View