» Articles » PMID: 8490140

Nitrite Reductase Gene from Synechococcus Sp. PCC 7942: Homology Between Cyanobacterial and Higher-plant Nitrite Reductases

Overview
Journal Plant Mol Biol
Date 1993 Mar 1
PMID 8490140
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

The gene encoding nitrite reductase (nir) from the cyanobacterium Synechococcus sp. PCC 7942 has been identified and sequenced. This gene comprises 1536 nucleotides and would encode a polypeptide of 56,506 Da that shows similarity to nitrite reductase from higher plants and to the sulfite reductase hemoprotein from enteric bacteria. Identities found at positions corresponding to those amino acids which in the above-mentioned proteins hold the Fe4S4-siroheme active center suggest that nitrite reductase from Synechococcus bears an active site much alike that present in those reductases. The fact that the Synechococcus and higher-plant nitrite reductases are homologous proteins gives support to the endosymbiont theory for the origin of chloroplasts.

Citing Articles

Elevated carbon dioxide levels lead to proteome-wide alterations for optimal growth of a fast-growing cyanobacterium, Synechococcus elongatus PCC 11801.

Mehta K, Jaiswal D, Nayak M, Prasannan C, Wangikar P, Srivastava S Sci Rep. 2019; 9(1):6257.

PMID: 31000743 PMC: 6472392. DOI: 10.1038/s41598-019-42576-1.


Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway.

Ocana-Pallares E, Najle S, Scazzocchio C, Ruiz-Trillo I PLoS Genet. 2019; 15(2):e1007986.

PMID: 30789903 PMC: 6400420. DOI: 10.1371/journal.pgen.1007986.


The Cyanotoxin BMAA Induces Heterocyst Specific Gene Expression in sp. PCC 7120 under Repressive Conditions.

Popova A, Semashko T, Kostina N, Rasmussen U, Govorun V, Koksharova O Toxins (Basel). 2018; 10(11).

PMID: 30453523 PMC: 6266585. DOI: 10.3390/toxins10110478.


Genomic Analysis of Two Phylogenetically Distinct Species Reveals Their Genomic Plasticity and Functional Diversity.

Ushiki N, Fujitani H, Shimada Y, Morohoshi T, Sekiguchi Y, Tsuneda S Front Microbiol. 2018; 8:2637.

PMID: 29375506 PMC: 5767232. DOI: 10.3389/fmicb.2017.02637.


The Acceptor Side of Photosystem II Is the Initial Target of Nitrite Stress in Synechocystis sp. Strain PCC 6803.

Zhang X, Ma F, Zhu X, Zhu J, Rong J, Zhan J Appl Environ Microbiol. 2016; 83(3).

PMID: 27864175 PMC: 5244309. DOI: 10.1128/AEM.02952-16.


References
1.
Weeden N . Genetic and biochemical implications of the endosymbiotic origin of the chloroplast. J Mol Evol. 1981; 17(3):133-9. DOI: 10.1007/BF01733906. View

2.
Ostrowski J, Wu J, Rueger D, Miller B, Siegel L, KREDICH N . Characterization of the cysJIH regions of Salmonella typhimurium and Escherichia coli B. DNA sequences of cysI and cysH and a model for the siroheme-Fe4S4 active center of sulfite reductase hemoprotein based on amino acid homology with spinach.... J Biol Chem. 1989; 264(26):15726-37. View

3.
Lahners K, Kramer V, Back E, Privalle L, Rothstein S . Molecular cloning of complementary DNA encoding maize nitrite reductase: molecular analysis and nitrate induction. Plant Physiol. 1988; 88(3):741-6. PMC: 1055653. DOI: 10.1104/pp.88.3.741. View

4.
Douglas S, Turner S . Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. J Mol Evol. 1991; 33(3):267-73. DOI: 10.1007/BF02100678. View

5.
Campbell W, Kinghorn K . Functional domains of assimilatory nitrate reductases and nitrite reductases. Trends Biochem Sci. 1990; 15(8):315-9. DOI: 10.1016/0968-0004(90)90021-3. View