» Articles » PMID: 8369449

Solutions for Transients in Arbitrarily Branching Cables: II. Voltage Clamp Theory

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1993 Jul 1
PMID 8369449
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Analytical solutions are derived for arbitrarily branching passive neurone models with a soma and somatic shunt, for synaptic inputs and somatic voltage commands, for both perfect and imperfect somatic voltage clamp. The solutions are infinite exponential series. Perfect clamp decouples different dendritic trees at the soma: each exponential component exists only in one tree; its time constant is independent of stimulating and recording position within the tree; its amplitude is the product of a factor constant over that entire tree and factors dependent on stimulating and recording positions. Imperfect clamp to zero is mathematically equivalent to voltage recording with a shunt. As the series resistance increases, different dendritic trees become more strongly coupled. A number of interesting response symmetries are evident. The solutions reveal parameter dependencies, including an insensitivity of the early parts of the responses to specific membrane resistivity and somatic shunt, and an approximately linear dependence of the slower time constants on series resistance, for small series resistances. The solutions are illustrated using a "cartoon" representation of a CA1 pyramidal cell and a two-cylinder + soma model.

Citing Articles

Exact solutions to cable equations in branching neurons with tapering dendrites.

Yihe L, Timofeeva Y J Math Neurosci. 2020; 10(1):1.

PMID: 31993756 PMC: 6987294. DOI: 10.1186/s13408-020-0078-z.


Extracellular S100β Disrupts Bergman Glia Morphology and Synaptic Transmission in Cerebellar Purkinje Cells.

Belozor O, Yakovleva D, Potapenko I, Shuvaev A, Smolnikova M, Vasilev A Brain Sci. 2019; 9(4).

PMID: 31013844 PMC: 6523464. DOI: 10.3390/brainsci9040080.


Unique membrane properties and enhanced signal processing in human neocortical neurons.

Eyal G, Verhoog M, Testa-Silva G, Deitcher Y, Lodder J, Benavides-Piccione R Elife. 2016; 5.

PMID: 27710767 PMC: 5100995. DOI: 10.7554/eLife.16553.


Associative plasticity at excitatory synapses facilitates recruitment of fast-spiking interneurons in the dentate gyrus.

Sambandan S, Sauer J, Vida I, Bartos M J Neurosci. 2010; 30(35):11826-37.

PMID: 20810902 PMC: 6633430. DOI: 10.1523/JNEUROSCI.2012-10.2010.


Membrane capacitance measurements revisited: dependence of capacitance value on measurement method in nonisopotential neurons.

Golowasch J, Thomas G, Taylor A, Patel A, Pineda A, Khalil C J Neurophysiol. 2009; 102(4):2161-75.

PMID: 19571202 PMC: 2775376. DOI: 10.1152/jn.00160.2009.


References
1.
Barrett J, CRILL W . Specific membrane properties of cat motoneurones. J Physiol. 1974; 239(2):301-24. PMC: 1330925. DOI: 10.1113/jphysiol.1974.sp010570. View

2.
RALL W, Rinzel J . Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J. 1973; 13(7):648-87. PMC: 1484314. DOI: 10.1016/S0006-3495(73)86014-X. View

3.
Rinzel J, RALL W . Transient response in a dendritic neuron model for current injected at one branch. Biophys J. 1974; 14(10):759-90. PMC: 1334571. DOI: 10.1016/S0006-3495(74)85948-5. View

4.
Horwitz B . An analytical method for investigating transient potentials in neurons with branching dendritic trees. Biophys J. 1981; 36(1):155-92. PMC: 1327582. DOI: 10.1016/S0006-3495(81)84722-4. View

5.
Koch C, Poggio T, Torre V . Retinal ganglion cells: a functional interpretation of dendritic morphology. Philos Trans R Soc Lond B Biol Sci. 1982; 298(1090):227-63. DOI: 10.1098/rstb.1982.0084. View