» Articles » PMID: 8349797

Electrical Properties of the Rabbit Cortical Collecting Duct from Obstructed and Contralateral Kidneys After Unilateral Ureteral Obstruction

Overview
Journal J Clin Invest
Specialty General Medicine
Date 1993 Aug 1
PMID 8349797
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Electrophysiological techniques were used to determine the electrical properties of the collecting duct (CD) cell in the isolated cortical collecting duct from obstructed (UUOOK) and contralateral (UUOCK) kidneys in rabbits 24 h after unilateral ureteral obstruction (UUO); results were compared with those from sham-operated kidneys. The lumen-negative transepithelial voltage and the basolateral membrane voltage (VB) were decreased in the UUOOK, and increased in the UUOCK. The transepithelial conductance (GT) was decreased in parallel with an increase in the fractional apical membrane resistance (fRA) and a decrease in apical membrane conductance in the UUOOK. By contrast, the GT was increased in parallel with increases in apical and basolateral membrane conductances in the UUOCK. The amiloride-sensitive changes in apical membrane voltage (VA), GT and fRA were lower in the UUOOK, but greater in the UUOCK. The changes in VA and GT upon raising the perfusate K+ concentration and upon addition of luminal Ba2+ were decreased in the UUOOK, and increased in the UUOCK. Addition of ouabain to the bath resulted in a smaller depolarization of VB in the UUOOK, but in a greater depolarization in the UUOCK. Upon lowering bath Cl-, the change in basolateral membrane electromotive force (delta EMF) was increased in the UUOOK, and decreased in the UUOCK. Reversely, upon raising bath K+, the delta EMF was decreased in the UUOOK, and increased in the UUOCK. We conclude: (a) the conductances of Na+ and K+ in the apical membrane, and active Na(+)-K+ pump activity and relative K+ conductance in the basolateral membrane are decreased in the UUOOK, and increased in the UUOCK; (b) the relative basolateral membrane Cl- conductance was increased in the UUOOK, and decreased in the UUOCK.

Citing Articles

Short-term effects of uninephrectomy on electrical properties of the cortical collecting duct from rabbit remnant kidneys.

Muto S, Ebata S, Asano Y J Clin Invest. 1994; 93(1):286-96.

PMID: 8282799 PMC: 293764. DOI: 10.1172/JCI116958.


Electrical properties of the rabbit cortical collecting duct from obstructed kidneys after unilateral ureteral obstruction. Effects of renal decapsulation.

Muto S, Asano Y J Clin Invest. 1994; 94(5):1846-54.

PMID: 7962530 PMC: 294587. DOI: 10.1172/JCI117534.

References
1.
Kaissling B, Le Hir M . Distal tubular segments of the rabbit kidney after adaptation to altered Na- and K-intake. I. Structural changes. Cell Tissue Res. 1982; 224(3):469-92. DOI: 10.1007/BF00213746. View

2.
Salehmoghaddam S, Bradley T, Mikhail N, Nord E, Trizna W, Kheyfets R . Hypertrophy of basolateral Na-K pump activity in the proximal tubule of the remnant kidney. Lab Invest. 1985; 53(4):443-52. View

3.
Shimamura T, KISSANE J, Gyorkey F . Experimental hydroneophrosis. Nephron dissection and electron microscopy of the kidney following obstruction of the ureter and in recovery from obstruction. Lab Invest. 1966; 15(3):629-40. View

4.
Burg M, Grantham J, ABRAMOW M, ORLOFF J . Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966; 210(6):1293-8. DOI: 10.1152/ajplegacy.1966.210.6.1293. View

5.
Paulson D, FRALEY E . Chemical evidence for early but unsustained growth in the obstructed mouse kidney. Am J Physiol. 1970; 219(4):872-5. DOI: 10.1152/ajplegacy.1970.219.4.872. View