» Articles » PMID: 8270019

Parietal Neurons Encoding Spatial Locations in Craniotopic Coordinates

Overview
Journal Exp Brain Res
Specialty Neurology
Date 1993 Jan 1
PMID 8270019
Citations 81
Authors
Affiliations
Soon will be listed here.
Abstract

The receptive fields of visual neurons are known to be retinotopically arranged, and in awake animals they "move" with gaze, maintaining the same retinotopic location regardless of eye position. Here, we report the existence in the monkey parietal cortex of cells (called "real-position" cells) whose receptive field does not systematically move with gaze. These cells respond to the visual stimulation of the same spatial location regardless of eye position and therefore directly encode visual space in craniotopic instead of retinotopic coordinates.

Citing Articles

Crossmodal correspondence of elevation/pitch and size/pitch is driven by real-world features.

McEwan J, Kritikos A, Zeljko M Atten Percept Psychophys. 2024; 86(8):2821-2833.

PMID: 39461934 PMC: 11652408. DOI: 10.3758/s13414-024-02975-7.


Neural Transformation from Retinotopic to Background-Centric Coordinates in the Macaque Precuneus.

Uchimura M, Kumano H, Kitazawa S J Neurosci. 2024; 44(48).

PMID: 39406517 PMC: 11604138. DOI: 10.1523/JNEUROSCI.0892-24.2024.


Distributions of Visual Receptive Fields from Retinotopic to Craniotopic Coordinates in the Lateral Intraparietal Area and Frontal Eye Fields of the Macaque.

Yang L, Jin M, Zhang C, Qian N, Zhang M Neurosci Bull. 2023; 40(2):171-181.

PMID: 37573519 PMC: 10838878. DOI: 10.1007/s12264-023-01097-8.


Inferring visual space from ultra-fine extra-retinal knowledge of gaze position.

Zhao Z, Ahissar E, Victor J, Rucci M Nat Commun. 2023; 14(1):269.

PMID: 36650146 PMC: 9845343. DOI: 10.1038/s41467-023-35834-4.


The spatial properties of adaptation-induced distance compression.

Jovanovic L, McGraw P, Roach N, Johnston A J Vis. 2022; 22(11):7.

PMID: 36223110 PMC: 9583746. DOI: 10.1167/jov.22.11.7.


References
1.
Zee D, Optican L, Cook J, Robinson D, Engel W . Slow saccades in spinocerebellar degeneration. Arch Neurol. 1976; 33(4):243-51. DOI: 10.1001/archneur.1976.00500040027004. View

2.
Gentilucci M, Scandolara C, Pigarev I, Rizzolatti G . Visual responses in the postarcuate cortex (area 6) of the monkey that are independent of eye position. Exp Brain Res. 1983; 50(2-3):464-8. DOI: 10.1007/BF00239214. View

3.
Battaglini P, Squatrito S, Morandi C, Galletti C . Microprocessor-based system for spike and eye-movement data acquisition and storage. Pflugers Arch. 1984; 400(2):194-6. DOI: 10.1007/BF00585039. View

4.
Galletti C, Squatrito S, Battaglini P, Grazia Maioli M . 'Real-motion' cells in the primary visual cortex of macaque monkeys. Brain Res. 1984; 301(1):95-110. DOI: 10.1016/0006-8993(84)90406-2. View

5.
Rolls E, Miyashita Y, Cahusac P, Kesner R, Niki H, Feigenbaum J . Hippocampal neurons in the monkey with activity related to the place in which a stimulus is shown. J Neurosci. 1989; 9(6):1835-45. PMC: 6569734. View