» Articles » PMID: 8215795

Metabolism of 2-chloro-4-methylphenoxyacetate by Alcaligenes Eutrophus JMP 134

Overview
Journal Arch Microbiol
Specialty Microbiology
Date 1993 Jan 1
PMID 8215795
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

2-Chloro-4-methylphenoxyacetate is not a growth substrate for Alcaligenes eutrophus JMP 134 and JMP 134-1. It is, however, being transformed by enzymes of 2,4-dichlorophenoxyacetic acid metabolism to 2-chloro-4-methyl-cis,cis-muconate, which is converted by enzymatic 1,4-cycloisomerization to 4-carboxymethyl-2-chloro-4-methylmuconolactone as a dead end metabolite. Chemically, only 3,6-cycloisomerization occurs, giving rise to both diastereomers of 4-carboxychloromethyl-3-methylbut-2-en-4-olide. Those lactones harboring a chlorosubstituent on the 4-carboxymethyl side chain were surprisingly stable under physiological as well as acidic conditions.

Citing Articles

Characterising Complex Enzyme Reaction Data.

Donertas H, Martinez Cuesta S, Rahman S, Thornton J PLoS One. 2016; 11(2):e0147952.

PMID: 26840640 PMC: 4740462. DOI: 10.1371/journal.pone.0147952.


Modified 3-oxoadipate pathway for the biodegradation of methylaromatics in Pseudomonas reinekei MT1.

Marin M, Perez-Pantoja D, Donoso R, Wray V, Gonzalez B, Pieper D J Bacteriol. 2010; 192(6):1543-52.

PMID: 20061479 PMC: 2832525. DOI: 10.1128/JB.01208-09.


A gene cluster involved in degradation of substituted salicylates via ortho cleavage in Pseudomonas sp. strain MT1 encodes enzymes specifically adapted for transformation of 4-methylcatechol and 3-methylmuconate.

Camara B, Bielecki P, Kaminski F, Martins Dos Santos V, Plumeier I, Nikodem P J Bacteriol. 2006; 189(5):1664-74.

PMID: 17172348 PMC: 1855727. DOI: 10.1128/JB.01192-06.


Formation of Dimethylmuconolactones from Dimethylphenols by Alcaligenes eutrophus JMP 134.

Pieper D, Stadler-Fritzsche K, Knackmuss H, Timmis K Appl Environ Microbiol. 1995; 61(6):2159-65.

PMID: 16535041 PMC: 1388459. DOI: 10.1128/aem.61.6.2159-2165.1995.


Chloromethylmuconolactones as critical metabolites in the degradation of chloromethylcatechols: recalcitrance of 2-chlorotoluene.

Pollmann K, Wray V, Pieper D J Bacteriol. 2005; 187(7):2332-40.

PMID: 15774876 PMC: 1065237. DOI: 10.1128/JB.187.7.2332-2340.2005.


References
1.
Catelani D, Fiecchi A, Galli E . Dextro-gamma-carboxymethyl-gamma-methyl-delta-alpha-butenolide. A 1,2-ring-fission product of 4-methylcatechol by Pseudomonas desmolyticum. Biochem J. 1971; 121(1):89-92. PMC: 1176489. DOI: 10.1042/bj1210089. View

2.
Schlomann M, Schmidt E, Knackmuss H . Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. J Bacteriol. 1990; 172(9):5112-8. PMC: 213169. DOI: 10.1128/jb.172.9.5112-5118.1990. View

3.
Schlomann M, Fischer P, Schmidt E, Knackmuss H . Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate. J Bacteriol. 1990; 172(9):5119-29. PMC: 213170. DOI: 10.1128/jb.172.9.5119-5129.1990. View

4.
Hartmann J, Reineke W, Knackmuss H . Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad. Appl Environ Microbiol. 1979; 37(3):421-8. PMC: 243232. DOI: 10.1128/aem.37.3.421-428.1979. View

5.
Vollmer M, Stadler-Fritzsche K, Schlomann M . Conversion of 2-chloromaleylacetate in Alcaligenes eutrophus JMP134. Arch Microbiol. 1993; 159(2):182-8. DOI: 10.1007/BF00250280. View