» Articles » PMID: 8163669

Overexpression of Apolipoprotein CII Causes Hypertriglyceridemia in Transgenic Mice

Overview
Journal J Clin Invest
Specialty General Medicine
Date 1994 Apr 1
PMID 8163669
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

We have generated transgenic mice expressing the human apolipoprotein CII (apoCII) gene under the transcriptional control of the human cytochrome P-450 IA1 (CYPIA1) promoter. Human apoCII transgenic (HuCIITg) mice exhibited significant basal expression of the transgene (plasma apoCII level = 26.1 +/- 4 mg/dl) and showed further induction of transgene expression after treatment with beta-naphthoflavone. Unexpectedly, HuCIITg mice were hypertriglyceridemic and human apoCII levels correlated strongly to triglyceride levels (R = 0.89, P < 0.0001). Triglyceride levels (mg/dl +/- SEM) were elevated compared to controls in both the fed (804 +/- 113 vs 146 +/- 18, P < 0.001) and fasted (273 +/- 39 vs 61 +/- 4, P < 0.001) states. HuCIITg mice accumulated triglyceride-rich very low density lipoproteins (VLDL) with an increased apoC/apoE ratio. Tracer kinetic studies indicated delayed clearance of VLDL-triglyceride, and studies using Triton inhibition of VLDL clearance showed no increase in VLDL production. Plasma from these mice activated mouse lipoprotein lipase normally and radiolabeled VLDL were normally hydrolyzed. However, HuCIITg VLDL showed markedly decreased binding to heparin-Sepharose, suggesting that apoCII-rich, apoE-poor lipoprotein may be less accessible to cell surface lipases or receptors within their glycosaminoglycan matrices. HuCIITg mice are a promising model of hypertriglyceridemia that suggests a more complex role for apoCII in the metabolism of plasma triglycerides.

Citing Articles

Closing the gaps in patient management of dyslipidemia: stepping into cardiovascular precision diagnostics with apolipoprotein profiling.

Reijnders E, van der Laarse A, Ruhaak L, Cobbaert C Clin Proteomics. 2024; 21(1):19.

PMID: 38429638 PMC: 10908091. DOI: 10.1186/s12014-024-09465-w.


Genetically-engineered hamster models: applications and perspective in dyslipidemia and atherosclerosis-related cardiovascular disease.

Liu G, Lai P, Guo J, Wang Y, Xian X Med Rev (2021). 2023; 1(1):92-110.

PMID: 37724074 PMC: 10388752. DOI: 10.1515/mr-2021-0004.


Quartet of APOCs and the Different Roles They Play in Diabetes.

Hsu C, Kanter J, Kothari V, Bornfeldt K Arterioscler Thromb Vasc Biol. 2023; 43(7):1124-1133.

PMID: 37226733 PMC: 10330679. DOI: 10.1161/ATVBAHA.122.318290.


Apolipoprotein C-II: a new look at an old protein.

Hegele R Eur Heart J. 2023; 44(25):2345-2347.

PMID: 37161516 PMC: 10314325. DOI: 10.1093/eurheartj/ehad237.


The Importance of Lipoprotein Lipase Regulation in Atherosclerosis.

Kumari A, Kristensen K, Ploug M, Lund Winther A Biomedicines. 2021; 9(7).

PMID: 34356847 PMC: 8301479. DOI: 10.3390/biomedicines9070782.


References
1.
Ito Y, Azrolan N, OConnell A, Walsh A, Breslow J . Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science. 1990; 249(4970):790-3. DOI: 10.1126/science.2167514. View

2.
BARTLETT G . Phosphorus assay in column chromatography. J Biol Chem. 1959; 234(3):466-8. View

3.
Weisgraber K, Mahley R, Kowal R, Herz J, Goldstein J, Brown M . Apolipoprotein C-I modulates the interaction of apolipoprotein E with beta-migrating very low density lipoproteins (beta-VLDL) and inhibits binding of beta-VLDL to low density lipoprotein receptor-related protein. J Biol Chem. 1990; 265(36):22453-9. View

4.
Rosenberg D . Tissue-specific induction of the carcinogen inducible cytochrome P450 isoform, P450IAI, in colonic epithelium. Arch Biochem Biophys. 1991; 284(1):223-6. DOI: 10.1016/0003-9861(91)90288-t. View

5.
Weber K, Osborn M . The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969; 244(16):4406-12. View