» Articles » PMID: 8146153

Residues Essential for the Function of SecE, a Membrane Component of the Escherichia Coli Secretion Apparatus, Are Located in a Conserved Cytoplasmic Region

Overview
Specialty Science
Date 1994 Mar 29
PMID 8146153
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Protein export in Escherichia coli is absolutely dependent on two integral membrane proteins, SecY and SecE. Previous deletion mutagenesis of the secE gene showed that only the third of three membrane-spanning segments and a portion of the second cytoplasmic region are necessary for its function in protein export. Here we further define the residues important for SecE function. Alignment of the SecE homologues of various eubacteria reveals that they all contain one membrane-spanning segment, compared with three in E. coli SecE, and that the most conserved region among them lies in their putative cytoplasmic amino termini; little homology exists in their membrane-spanning segments. The SecE homologue of the extreme thermophilic bacterium Thermotoga maritima was cloned and found to complement a deletion of secE in E. coli. Deletion or replacement of the cytoplasmic region of E. coli SecE eliminated SecE function, indicating that this sequence is essential for a functional secretion machinery. Mutant analysis suggests that the most important function of the third membrane-spanning segment is to maintain the proper topological arrangement of the conserved cytoplasmic domain.

Citing Articles

Pro-SMP finder-A systematic approach for discovering small membrane proteins in prokaryotes.

Hoffman T, Kinne J, Cho K PLoS One. 2024; 19(2):e0299169.

PMID: 38422081 PMC: 10903887. DOI: 10.1371/journal.pone.0299169.


Nuclear lamin functions and disease.

Butin-Israeli V, Adam S, Goldman A, Goldman R Trends Genet. 2012; 28(9):464-71.

PMID: 22795640 PMC: 3633455. DOI: 10.1016/j.tig.2012.06.001.


The bacterial Sec-translocase: structure and mechanism.

Lycklama A Nijeholt J, Driessen A Philos Trans R Soc Lond B Biol Sci. 2012; 367(1592):1016-28.

PMID: 22411975 PMC: 3297432. DOI: 10.1098/rstb.2011.0201.


Cryo-EM structure of the ribosome-SecYE complex in the membrane environment.

Frauenfeld J, Gumbart J, van der Sluis E, Funes S, Gartmann M, Beatrix B Nat Struct Mol Biol. 2011; 18(5):614-21.

PMID: 21499241 PMC: 3412285. DOI: 10.1038/nsmb.2026.


SecA, a remarkable nanomachine.

Kusters I, Driessen A Cell Mol Life Sci. 2011; 68(12):2053-66.

PMID: 21479870 PMC: 3101351. DOI: 10.1007/s00018-011-0681-y.


References
1.
Bieker K, Phillips G, Silhavy T . The sec and prl genes of Escherichia coli. J Bioenerg Biomembr. 1990; 22(3):291-310. DOI: 10.1007/BF00763169. View

2.
Matsuyama S, Akimaru J, Mizushima S . SecE-dependent overproduction of SecY in Escherichia coli. Evidence for interaction between two components of the secretory machinery. FEBS Lett. 1990; 269(1):96-100. DOI: 10.1016/0014-5793(90)81128-b. View

3.
Altschul S, Gish W, Miller W, Myers E, Lipman D . Basic local alignment search tool. J Mol Biol. 1990; 215(3):403-10. DOI: 10.1016/S0022-2836(05)80360-2. View

4.
Schatz P, Beckwith J . Genetic analysis of protein export in Escherichia coli. Annu Rev Genet. 1990; 24:215-48. DOI: 10.1146/annurev.ge.24.120190.001243. View

5.
Schatz P, Bieker K, Ottemann K, Silhavy T, Beckwith J . One of three transmembrane stretches is sufficient for the functioning of the SecE protein, a membrane component of the E. coli secretion machinery. EMBO J. 1991; 10(7):1749-57. PMC: 452846. DOI: 10.1002/j.1460-2075.1991.tb07699.x. View